48 research outputs found

    Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness.

    Get PDF
    BACKGROUND: Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. METHODS: To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. RESULTS: We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors' FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. CONCLUSION: Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies

    Sodium Thiosulfate in the Pregnant Dahl Salt-Sensitive Rat, a Model of Preeclampsia

    Get PDF
    Aberrant production of hydrogen sulfide (H2S) has been linked to preeclampsia. We hypothesized that sodium thiosulfate (STS), a H2S donor, reduces hypertension and proteinuria, and diminishes fetal growth restriction in the Dahl salt-sensitive (S) rat, a spontaneous model of superimposed preeclampsia. In addition to a control group (n = 13), two groups received STS via drinking water at a dose of 2 g (n = 9) or 3 g per kg body weight per day (n = 8) from gestational day (GD) 10 to 20. Uterine artery resistance index was measured (GD18), urinary protein excretion rate was determined (GD19), and blood pressure and fetal outcomes were evaluated (GD20). At 2 g, STS had no effect on preeclamptic symptoms or fetal outcome. At 3 g, STS reduced maternal hypertension (121.8 ± 3.0 vs. 136.3 ± 2.9), but increased proteinuria (89 ± 15 vs. 56 ± 5 mg/24h), and relative kidney weight (0.86 ± 0.04 vs. 0.73 ± 0.02%). Fetal/placental weight ratio was reduced (3.83 ± 0.07 vs. 4.31 ± 0.08) without affecting litter size. No differences in uterine artery flow or renal histological damage were noted across treatment groups. While these data suggest a promising antihypertensive effect that could imply prolongation of preeclamptic pregnancies, the unfavorable effects on proteinuria, kidney weight, and fetal/placental weight ratio implies that clinical implementation of STS is contra-indicated until safety for mother and child can be verified.</p

    Signalling, trafficking and glucoregulatory properties of glucagon-like peptide-1 receptor agonists exendin-4 and lixisenatide.

    Get PDF
    BACKGROUND AND PURPOSE: Amino acid substitutions at the N-termini of glucagon-like peptide-1 receptor agonist (GLP-1RA) peptides result in distinct patterns of intracellular signalling, sub-cellular trafficking and efficacy in vivo. Here we aimed to determine whether sequence differences at the ligand C-termini of clinically approved GLP-1RAs exendin-4 and lixisenatide lead to similar phenomena. EXPERIMENTAL APPROACH: Exendin-4, lixisenatide, and N-terminally substituted analogues with biased signalling characteristics were compared across a range of in vitro trafficking and signalling assays in different cell types. Fluorescent ligands and new time-resolved FRET approaches were developed to study agonist behaviours at the cellular and sub-cellular level. Anti-hyperglycaemic and anorectic effects of each parent ligand, and their biased derivatives, were assessed in mice. KEY RESULTS: Lixisenatide and exendin-4 showed equal binding affinity, but lixisenatide was 5-fold less potent for cAMP signalling. Both peptides induced extensive GLP-1R clustering in the plasma membrane and were rapidly endocytosed, but the GLP-1R recycled more slowly to the cell surface after lixisenatide treatment. These combined deficits resulted in reduced maximal sustained insulin secretion and reduced anti-hyperglycaemic and anorectic effects in mice with lixisenatide. N-terminal substitution of His1 by Phe1 to both ligands had favourable effects on their pharmacology, resulting in improved insulin release and lowering of blood glucose. CONCLUSION AND IMPLICATIONS: Changes to the C-terminus of exendin-4 affect signalling potency and GLP-1R trafficking via mechanisms unrelated to GLP-1R occupancy. These differences were associated with changes in their ability to control blood glucose and therefore may be therapeutically relevant

    The metabolomic effects of tripeptide gut hormone infusion compared to Roux-en-Y gastric bypass and caloric restriction

    Get PDF
    Context: The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1), oxyntomodulin (OXM), and peptide YY (PYY) are regulators of energy intake and glucose homeostasis, and are thought to contribute to the glucose-lowering effects of bariatric surgery. Objective: To establish the metabolomic effects of a combined infusion of GLP-1, OXM and PYY (tripeptide “GOP”) in comparison to a placebo infusion, Roux-en-Y gastric bypass (RYGB) surgery, and a very low-calorie diet (VLCD). Design and setting: Sub-analysis of a single-blind, randomised, placebo-controlled study of GOP infusion (ClinicalTrials.gov NCT01945840), including VLCD and RYGB comparator groups. Patients and interventions: 25 obese patients with type 2 diabetes or prediabetes were randomly allocated to receive a 4-week subcutaneous infusion of GOP (n=14) or 0.9% saline control (SAL; n=11). An additional 22 patients followed a VLCD, and 21 underwent RYGB surgery. Main outcome measures: Plasma and urine samples collected at baseline and 4 weeks into each intervention were subjected to cross-platform metabolomic analysis, followed by unsupervised and supervised modelling approaches to identify similarities and differences between the effects of each intervention. Results: Aside from glucose, very few metabolites were affected by GOP, contrasting with major metabolomic changes seen with VLCD and RYGB. Conclusions: Treatment with GOP provides a powerful glucose-lowering effect but does not replicate the broader metabolomic changes seen with VLCD and RYGB. The contribution of these metabolomic changes to the clinical benefits of RYGB remains to be elucidated

    Pushing arterial-venous plasma biomarkers to new heights: A model for personalised redox metabolomics?

    Get PDF
    The chemical and functional interactions between Reactive Oxygen (ROS), Nitrogen (RNS) and Sulfur (RSS) species allow organisms to detect and respond to metabolic and environmental stressors, such as exercise and altitude exposure. Whether redox markers and constituents of this 'Reactive Species Interactome' (RSI) differ in concentration between arterial and venous blood is unknown. We hypothesised that such measurements may provide useful insight into metabolic/redox regulation at the whole-body level and would be consistent between individuals exposed to identical challenges. An exploratory study was performed during the Xtreme Alps expedition in 2010 in which four healthy individuals (2 male, 2 female) underwent paired arterial and central venous blood sampling before, during and after performance of a constant-work-rate cardiopulmonary exercise test, at sea level and again at 4559 m. Unexpectedly, plasma total free thiol and free cysteine concentrations remained substantially elevated at altitude throughout exercise with minimal arteriovenous gradients. Free sulfide concentrations changed only modestly upon combined altitude/exercise stress, whereas bound sulfide levels were lower at altitude than sea-level. No consistent signal indicative of the expected increased oxidative stress and nitrate→nitrite→NO reduction was observed with 4-hydroxynonenal, isoprostanes, nitrate, nitrite, nitroso species and cylic guanosine monophosphate. However, the observed arteriovenous concentration differences revealed a dynamic pattern of response that was unique to each participant. This novel redox metabolomic approach of obtaining quantifiable 'metabolic signatures' to a defined physiological challenge could potentially offer new avenues for personalised medicine

    Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss

    Get PDF
    Glucagon analogues show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analogue, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a prerequisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics

    Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss

    Full text link
    Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics
    corecore