683 research outputs found

    The interplay of DNA and lipid biomarkers in the detection of tuberculosis and leprosy in mummies and other skeletal remains

    Get PDF
    The detection of ancient DNA and lipid biomarkers has become established for the detection of tuberculosis and leprosy in archaeological material, including mummies. Recording the characteristic profiles of long-chain mycolic acids by fluorescence high-performance liquid chromatography (HPLC) has been developed to provide a highly specific method for the detection of ancient tuberculosis and leprosy. Initially, mycolate methylanthryl esters were analysed but these derivatives have been superseded by pyrenebutyric acid derivatives of pentafluorobenzyl esters. Long-chain compounds are released by an efficient non-aqueous alkaline extraction and acidic components are converted to stable pentafluorobenzyl esters, which can be preserved for immediate or future analysis. These long-chain components are fractionated into non-hydroxylated esters, mycolates and characteristic phthiocerols. The mycolate pyrenebutyrates are analyzed by fluorescence HPLC to produce profiles characteristic of mycobacterial disease. It is shown in this study that residual material from DNA determinations, on mainly Turkish and Hungarian skeletons, can be used for the detection of mycolic acid biomarkers for tuberculosis and leprosy. The correlation between DNA and mycolic acids biomarker results was not precise, confirming the importance of using complementary methods. In one particular Turkish skeleton, with poor DNA preservation, mycolic acid analysis supported pathological changes indicative of leprosy

    Detection of Mycobacterium tuberculosis in Sputum by Gas Chromatography-Mass Spectrometry of Methyl Mycocerosates Released by Thermochemolysis

    Get PDF
    Tuberculosis requires rapid diagnosis to prevent further transmission and allow prompt administration of treatment. Current methods for diagnosing pulmonary tuberculosis lack sensitivity are expensive or are extremely slow. The identification of lipids using gas chromatography- electron impact mass spectrometry (GC-EI/MS) could provide an alternative solution. We have studied mycocerosic acid components of the phthiocerol dimycocerosate (PDIM) family of lipids using thermochemolysis GC-EI/MS. To facilitate use of the technology in a routine diagnostic laboratory a simple extraction procedure was employed where PDIMs were extracted from sputum using petroleum ether, a solvent of low polarity. We also investigated a method using methanolic tetramethylammonium hydroxide, which facilitates direct transesterification of acidic components to methyl esters in the inlet of the GC-MS system. This eliminates conventional chemical manipulations allowing rapid and convenient analysis of samples. When applied to an initial set of 40 sputum samples, interpretable results were obtained for 35 samples with a sensitivity relative to culture of 94% (95%CI: 69.2,100) and a specificity of 100% (95%CI: 78.1,100). However, blinded testing of a larger set of 395 sputum samples found the assay to have a sensitivity of 61.3% (95%CI: 54.9,67.3) and a specificity of 70.6% (95%CI: 62.3,77.8) when compared to culture. Using the results obtained we developed an improved set of classification criteria, which when applied in a blinded re-analysis increased the sensitivity and specificity of the assay to 64.9% (95%CI: 58.6,70.8) and 76.2% (95%CI: 68.2,82.8) respectively. Highly variable levels of background signal were observed from individual sputum samples that inhibited interpretation of the data. The diagnostic potential of using thermochemolytic GC-EI/MS of PDIM biomarkers for diagnosis of tuberculosis in sputum has been established; however, further refinements in sample processing are required to enhance the sensitivity and robustness of the test

    Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil

    Get PDF
    A halophilic actinomycete strain designated H19T, was isolated from a Saharan soil in the Bamendil region (Ouargla province, South Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the strain were consistent with those of members of the genus Actinopolyspora, and 16S rRNA gene sequence analysis confirmed that strain H19T was a novel species of the genus Actinopolyspora. DNA–DNA hybridization value between strain H19T and the nearest Actinopolyspora species, A. halophila, was clearly below the 70 % threshold. The genotypic and phenotypic data showed that the organism represents a novel species of the genus Actinopolyspora for which the name Actinopolyspora algeriensis sp. nov. is proposed, with the type strain H19T (= DSM 45476T = CCUG 62415T)

    Osteological and Biomolecular Evidence of a 7000-Year-Old Case of Hypertrophic Pulmonary Osteopathy Secondary to Tuberculosis from Neolithic Hungary

    Get PDF
    Seventy-one individuals from the late Neolithic population of the 7000-year-old site of Hódmezővásárhely-Gorzsa were examined for their skeletal palaeopathology. This revealed numerous cases of infections and non-specific stress indicators in juveniles and adults, metabolic diseases in juveniles, and evidence of trauma and mechanical changes in adults. Several cases showed potential signs of tuberculosis, particularly the remains of the individual HGO-53. This is an important finding that has significant implications for our understanding of this community. The aim of the present study was to seek biomolecular evidence to confirm this diagnosis. HGO-53 was a young male with a striking case of hypertrophic pulmonary osteopathy (HPO), revealing rib changes and cavitations in the vertebral bodies. The initial macroscopic diagnosis of HPO secondary to tuberculosis was confirmed by analysis of Mycobacterium tuberculosis complex specific cell wall lipid biomarkers and corroborated by ancient DNA (aDNA) analysis. This case is the earliest known classical case of HPO on an adult human skeleton and is one of the oldest palaeopathological and palaeomicrobiological tuberculosis cases to date

    Mycobacterium tuberculosis Complex Lipid Virulence Factors Preserved in the 17,000 Year Old Skeleton of an Extinct Bison, Bison antiquus

    Get PDF
    Tracing the evolution of ancient diseases depends on the availability and accessibility of suitable biomarkers in archaeological specimens. DNA is potentially information-rich but it depends on a favourable environment for preservation. In the case of the major mycobacterial pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, robust lipid biomarkers are established as alternatives or complements to DNA analyses. A DNA report, a decade ago, suggested that a 17,000 year old skeleton of extinct Bison antiquus, from Natural Trap Cave, Wyoming, was the oldest known case of tuberculosis. In the current study, key mycobacterial lipid virulence factor biomarkers were detected in the same two samples from this bison. Fluorescence high-performance liquid chromatography (HPLC) indicated the presence of mycolic acids of the mycobacterial type, but they were degraded and could not be precisely correlated with tuberculosis. However, pristine profiles of C29, C30 and C32 mycocerosates and C27 mycolipenates, typical of the Mycobacterium tuberculosis complex, were recorded by negative ion chemical ionization gas chromatography mass spectrometry of pentafluorobenzyl ester derivatives. These findings were supported by the detection of C34 and C36 phthiocerols, which are usually esterified to the mycocerosates. The existence of Pleistocene tuberculosis in the Americas is confirmed and there are many even older animal bones with well-characterised tuberculous lesions similar to those on the analysed sample. In the absence of any evidence of tuberculosis in human skeletons older than 9,000 years BP, the hypothesis that this disease evolved as a zoonosis, before transfer to humans, is given detailed consideration and discussion

    Saccharothrix hoggarensis sp. nov., an actinomycete isolated from Saharan soil

    Get PDF
    An actinomycete, designated SA181T, was isolated from Saharan soil in the Hoggar region (south Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the isolate were consistent with the genus Saccharothrix, and 16S rRNA gene sequence analysis confirmed that strain SA181T was a novel member of the genus Saccharothrix. DNA–DNA hybridization values between strain SA181T and its closest phylogenetic neighbours, the type strains of Saccharothrix longispora, Saccharothrix texasensis and Saccharothrix xinjiangensis, were clearly below the 70 % threshold. The genotypic and phenotypic data showed that the isolate represents a novel species of the genus Saccharothrix, for which the name Saccharothrix hoggarensis sp. nov. is proposed, with the type strain SA181T ( = DSM 45457T  = CCUG 60214T)

    Regulation of CD1 Antigen-presenting Complex Stability

    Get PDF
    For major histocompatibility complex class I and II molecules, the binding of specific peptide antigens is essential for assembly and trafficking and is at the center of their quality control mechanism. However, the role of lipid antigen binding in stabilization and quality control of CD1 heavy chain (HC).beta(2)-microglobulin (beta(2)m) complexes is unclear. Furthermore, the distinct trafficking and loading routes of CD1 proteins take them from mildly acidic pH in early endososmal compartments (pH 6.0) to markedly acidic pH in lysosomes (pH 5.0) and back to neutral pH of the cell surface (pH 7.4). Here, we present evidence that the stability of each CD1 HC.beta(2)m complex is determined by the distinct pH optima identical to that of the intracellular compartments in which each CD1 isoform resides. Although stable at acidic endosomal pH, complexes are only stable at cell surface pH 7.4 when bound to specific lipid antigens. The proposed model outlines a quality control program that allows lipid exchange at low endosomal pH without dissociation of the CD1 HC.beta(2)m complex and then stabilizes the antigen-loaded complex at neutral pH at the cell surface

    Ultralong C100 Mycolic Acids Support the Assignment of Segniliparus as a New Bacterial Genus

    Get PDF
    Mycolic acid-producing bacteria isolated from the respiratory tract of human and non-human mammals were recently assigned as a distinct genus, Segniliparus, because they diverge from rhodococci and mycobacteria in genetic and chemical features. Using high accuracy mass spectrometry, we determined the chemical composition of 65 homologous mycolic acids in two Segniliparus species and separately analyzed the three subclasses to measure relative chain length, number and stereochemistry of unsaturations and cyclopropyl groups within each class. Whereas mycobacterial mycolate subclasses are distinguished from one another by R groups on the meromycolate chain, Segniliparus species synthesize solely non-oxygenated α-mycolates with high levels of cis unsaturation. Unexpectedly Segniliparus α-mycolates diverge into three subclasses based on large differences in carbon chain length with one bacterial culture producing mycolates that range from C58 to C100. Both the overall chain length (C100) and the chain length diversity (C42) are larger than previously seen for mycolic acid-producing organisms and provide direct chemical evidence for assignment of Segniliparus as a distinct genus. Yet, electron microscopy shows that the long and diverse mycolates pack into a typical appearing membrane. Therefore, these new and unexpected extremes of mycolic acid chemical structure raise questions about the modes of mycolic acid packing and folding into a membrane

    Ancient mycobacterial lipids: Key reference biomarkers in charting the evolution of tuberculosis

    Get PDF
    Mycobacterium tuberculosis has a cell envelope incorporating a peptidoglycan-linked arabinogalactan esterified by long-chain mycolic acids. A range of "free" lipids are associated with the "bound" mycolic acids, producing an effective envelope outer membrane. The distribution of these lipids is discontinuous among mycobacteria and such lipids have proven potential for biomarker use in tracing the evolution of tuberculosis. A plausible evolutionary scenario involves progression from an environmental organism, such as Mycobacterium kansasii, through intermediate "smooth" tubercle bacilli, labelled "Mycobacterium canettii"; cell envelope lipid composition possibly correlates with such a progression. M. kansasii and "M. canettii" have characteristic lipooligosaccharides, associated with motility and biofilms, and glycosyl phenolphthiocerol dimycocerosates ("phenolic glycolipids"). Both these lipid classes are absent in modern M. tuberculosis sensu stricto, though simplified phenolic glycolipids remain in certain current biotypes. Dimycocerosates of the phthiocerol family are restricted to smaller phthiodiolone diesters in M. kansasii. Diacyl and pentaacyl trehaloses are present in "M. canettii" and M. tuberculosis, accompanied in the latter by related sulfated acyl trehaloses. In comparison with environmental mycobacteria, subtle modifications in mycolic acid structures in "M. canettii" and M. tuberculosis are notable. The probability of essential tuberculosis evolution taking place in Pleistocene megafauna, rather than Homo sapiens, is reemphasised
    corecore