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SUMMARY 
 
Mycobacterium tuberculosis has a cell envelope incorporating a peptidoglycan-linked 

arabinogalactan esterified by long-chain mycolic acids. A range of “free” lipids are 

associated with the “bound” mycolic acids, producing an effective envelope outer 

membrane. The distribution of these lipids is discontinuous among mycobacteria and 

such lipids have proven potential for biomarker use in tracing the evolution of 

tuberculosis. A plausible evolutionary scenario involves progression from an 

environmental organism, such as Mycobacterium kansasii, through intermediate 

“smooth” tubercle bacilli, labelled “Mycobacterium canettii”; cell envelope lipid 

composition possibly correlates with such a progression. M. kansasii and “M. 

canettii” have characteristic lipooligosaccharides, associated with motility and 

biofilms, and glycosyl phenolphthiocerol dimycocerosates (“phenolic glycolipids”). 

Both these lipid classes are absent in modern M. tuberculosis sensu stricto, though 

simplified phenolic glycolipids remain in certain current biotypes. Dimycocerosates 

of the phthiocerol family are restricted to smaller phthiodiolone diesters in M. 

kansasii. Diacyl and pentaacyl trehaloses are present in “M. canettii” and M. 

tuberculosis, where they are accompanied by related sulfated acyl trehaloses. In 

comparison with environmental mycobacteria, subtle modifications in mycolic acid 

structures in “M. canettii” and M. tuberculosis are notable. The probability of 

essential tuberculosis evolution taking place in Pleistocene megafauna, rather than 

Homo sapiens, is reemphasised. 

 

 

 

Keywords: Tuberculosis; Evolution; Lipids; Biomarkers; Zoonosis 
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1. Introduction 
 

Tuberculosis is an ancient disease, whose pre-Holocene history is shrouded in 

mystery. Analysis of skeletal material has provided evidence for tuberculosis in Homo 

sapiens at up to 9,000 years (9 ka) before present (BP),1 almost back to the start of the 

Holocene. Travelling back from the Holocene into the cyclical glacial times of the 

Pleistocene, human skeletal material becomes scarce and no direct evidence for any 

tuberculosis in H. sapiens has been demonstrated. In contrast, distinctive tuberculosis 

lesions have been recorded in a range of megafauna and other animals from that 

epoch. Typically, the lesions take the form of undermined articular surfaces, as 

exemplified by a metacarpal from Bison antiquus recovered from Natural Trap Cave, 

Wyoming.2 In addition to the bison metacarpal, 19% of 1,002 125 ka to 8 ka BP bovid 

specimens3 and 52% of 113 38 ka to 10 ka BP mastodon bones4 had similar lesions 

indicative of tuberculosis. Bone lesions cannot be considered as complete proof of 

tuberculosis diagnosis, but the dearth of comparable lesions in bones from H. sapiens, 

over the same time period, is very striking. To resolve this conundrum it has been 

proposed2 that Mycobacterium tuberculosis may have been principally an animal 

disease during its early evolution, with transmission to humans occurring later. 

The use of amplified DNA sequences to diagnose tuberculosis in 

archaeological material has been developed during the past two decades.5 Major 

advances in determining full genomic data have been recently provided by the 

application of so-called “Next Generation Sequencing”6 and the more direct 

“Metagenomic” approach.7 Informative genomic data have been obtained for 

specimens stretching back to 9 ka in H. sapiens1 and 17 ka in extinct Bison antiquus2 

and these diagnoses have been supported by the use of robust lipid biomarkers.1,2,5 

The most diagnostic lipids have been mycolic, mycocerosic and mycolipenic acids 

and members of the phthiocerol family.1,2,5 These, and a range of other lipids, are vital 

components in the integrity of the cell envelopes of the tubercle bacillus and related 

taxa.8 Their distribution, however, is discontinuous and changes in lipid composition 

and structure may well be important factors in the evolution of effective pathogenic 

species. The aim of this paper is to outline a rational scenario for the evolution of the 

current M. tuberculosis complex from possible environmental candidates. The 

speculative focus will be on correlating changes in cell envelope lipid composition 

with developing pathogenicity, taking into account the suitability of particular animal 
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hosts along the way. Representative structures of the key lipids under consideration 

are shown in Figures 1 and 2. 

 

2. An environmental opportunist to a perfect pathogen? 

 

The challenge is to chart a pathway from ancestral environmental freely-

circulating mycobacterial species to M. tuberculosis sensu stricto, an obligate 

pathogen with no environmental niche. Currently favoured hypotheses all point to an 

evolutionary bottle-neck, initiated around 35 ka BP.9,10 Subsequent to this time period, 

the evolution of a range of particular clades follows an almost linear clonar 

evolutionary pattern, with key deletions leading to the well-defined modern M. 

tuberculosis complex (MTBC) causing tuberculosis in humans and various animals.11-

13 

There is increasing evidence that, before reaching the discontinuity of the 

bottle-neck, extensive horizontal gene transfer (HGT) was taking place in ancestral 

tuberculosis strains.10,14 These strains may not necessarily have been obligate 

pathogens but opportunist mycobacteria with the ability to survive in the hostile 

environment of an animal stomach. The rich flora of multiple animal stomachs would 

provide plentiful opportunities for HGTs, eventually resulting in interim organisms 

with an enhanced potential to cause tuberculosis. Prime candidates for such a role are 

pre-bottle-neck ancestral strains, sometimes termed “M. prototuberculosis”,9 which 

are associated with the “smooth” colony-forming “Canetti” variants of M. 

tuberculosis.15,16 “Mycobacterium canettii” smooth strains continue to be encountered 

in isolated cases of tuberculosis, but they are usually confined to certain locations in 

the Horn of Africa.15  

A case for M. marinum as the pivotal environmental source organism has been 

advanced,17 but several key factors mitigate against such a selection. The 

stereochemistries of the M. marinum PDIM waxes and PGLs are completely different 

from those produced by M. tuberculosis and M. kansasii.8,18 In addition, the 

oxygenated mycolic acids of M. marinum are not cyclopropanated, in contrast with 

those from M. tuberculosis and M. kansasii.18,19 The environmental organism that 

phenotypically resembles M. tuberculosis most closely is Mycobacterium kansasii and 

this relationship has been supported by genomic comparisons.20,21 Cogent arguments 

have been advanced to associate the evolution of tubercle bacilli with bacteria similar 
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to M. kansasii, including indications of HGTs between these taxa.20,21 Key genes 

acquired by HGT include those coding for mycobacterial lipids, transferases and 

proteins related to adaptation to anaerobic conditions.20,21 M. kansasii still causes 

pulmonary disease in Silesian and South African miners, the bacterium being 

contracted from water in showers.21 In developing a coherent evolutionary route, the 

pathway from M. kansasii, through “M. canettii” , to M. tuberculosis is a good 

working hypothesis. Changes in lipid composition are potentially very significant, 

involving the mycolic acids, phthiocerol dimycocerosates (PDIMs), glycosyl 

phenolphthiocerol dimycocerosates (“phenolic glycolipids”, PGLs) (Figure 1), diacyl 

trehaloses (DATs), pentaacyl trehaloses (PATs) and sulfated acyl trehalose 

glycolipids (SGLs) (Figure 2).8  

 

3. Does lipid evolution parallel M. tuberculosis evolution? 

 

3.1 Mycolic acids 

 

Possibly the most deep-lying fundamental differences between the lipids from 

M. kansasii and members of the M. tuberculosis complex (MTBC), loosely including 

“M. canettii” , are subtle changes in mycolic acid structure.  Mycolates from MTBC 

have characteristic 24-carbon chains in 2-position, whereas the mycolates from M. 

kansasii and the majority of mycobacteria have principally 22-carbon side chains.8,19 

In addition, the MTBC α-mycolates show a significant shortening of the size of the 

chain between carbon-3 and the proximal cyclopropane (17 → 13 carbons) and the 

lengthening of the terminal chain (18 → 20 carbons) beyond the distal cyclopropane 

unit, as compared with M. kansasii (Figure 1A).19 The methoxymycolates and 

ketomycolates of “M. canettii” and M. tuberculosis (Figure 1A) conform to the 

general pattern of these components in related mycobacteria, such as M. kansasii, but, 

significantly, these oxygenated mycolates are slightly larger than any others.19 

The balance of the three main types of mycolates is possibly significant; the 

ratios of the α-, methoxy- and ketomycolates are, respectively, ~10:5:8 for M. 

kansasii, ~10:6:8 for “M. canettii” and ~10:5:5 for M. tuberculosis.19 Having half of 

the proportions as α-mycolates in M. tuberculosis may be quite significant. The major 

all cis-cyclopropyl α-mycolates of all three taxa are similar in size, centred around 80 

carbons. Those from M. kansasii are restricted to 80 and 82 carbons overall, but there 
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are four detailed structural varieties of each giving a heterogeneous mixture of eight 

distinct α-mycolates.19 In contrast, the four α-mycolates from “M. canettii” and M. 

tuberculosis are all very uniform, the two major C78 and C80 components being 

accompanied by minor C82 and C84 mycolates.19 It is particularly notable that the 

central (14-carbon) and distal (20-carbon) meromycolate chains are invariable in the 

α-mycolates from “M. canettii” and M. tuberculosis (Figure 1A).19 The complex 

methoxymycolates from M. kansasii, totalling eight cis- and four trans-components, 

have a cis:trans ratio of ~3:2,whereas both “M. canettii” and M. tuberculosis have an 

enhanced cis:trans ratio of ~3:1.19 Somewhat simplified methoxymycolates, with six 

cis- and two trans-components are found in “M. canettii”, simplifying further to 

mainly a C85 and lesser C87 cis- and a single trans-methoxymycolate in M. 

tuberculosis.19 The trans-ketomycolates predominate over the cis-forms in M. 

kansasii (~6:1), “M. canettii” (~4:1) and M. tuberculosis (~3:2, respectively); the 

latter two have mainly a C87 trans-ketomycolate accompanied by six very minor 

variants but this contrasts with a heterogeneous mix of ten in M. kansasii.19  

The essence of the above seemingly complex changes is an apparent 

simplification and tightening up of mycolate composition. Mycolic acids are 

“cornerstones” of the mycobacterial outer membrane, providing a covalent 

hydrophobic inner leaflet, facilitating binding of the range of “free lipids” (Figures 1 

and 2) that comprise the outer leaflet.8 Physical studies indicate that ketomycolates 

appear to have a prime structural role in adopting tightly folded conformations to 

produce a solid foundation.22 It is not surprising, therefore, that there is minimal 

variation in the general structure of ketomycolates between, for example, M. kansasii 

and MTBC (Figure 1A). In contrast, the structurally different α-mycolates from M. 

kansasii and MTBC (Figure 1A) behave quite distinctly in monolayer studies.22 As 

noted above α-mycolates constitute half of the overall mycolates in M. tuberculosis, 

reinforcing the possibility of important modifications in cell envelope interactions 

with a special range of free lipids (Figures 1 and 2). 

 

3.2 Dimycocerosates of the phthiocerol family and glycosyl phenolphthiocerols 

 

The phthiocerol dimycocerosate (PDIM) waxes are important tuberculosis 

virulence factors and the “M. canettii” and M. tuberculosis examples are the largest 

(Figure 1B).8,23 The M. tuberculosis complex phthiocerol family has major C34/C36 
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phthiocerol A components, minor C33/C35 phthiocerol Bs and C33/C35 phthiodiolones 

(Figure 1B).2,8,23 In contrast, M. kansasii PDIM waxes were much smaller, having 

only C25/C27 phthiodiolones (Figure 1B) and no methoxylated phthiocerol As and 

Bs.23 Interestingly, the mainly C29/C30/C32 mycocerosic acid composition of M. 

kansasii PDIM waxes is comparable with that of the M. tuberculosis complex.23 

The glycosyl phenolphthiocerol dimycocerosates, the so-called “phenolic 

glycolipids” (PGLs) (Figure 1C), are related to the PDIMs (Figure 1B).8,23 The PGLs 

from “M. canettii”  comprise a 2-O-methyl rhamnosyl PGL and an extended 

triglycosyl PGL; interestingly, the main PGL produced by M. kansasii is extended 

further by an additional sugar (Figure 1C).8,23 This close structural similarity in PGLs 

has been highlighted in schemes suggesting an evolutionary progression from M. 

kansasii to “M. canettii” .21 The PGLs from M. kansasii do include a methoxylated 

phenolphthiocerol component (Figure 1C), in contrast to the situation for the PDIM 

waxes (Figure 1B).23 The 2-O-methyl rhamnosyl PGL is also characteristic of modern 

ecotypes, such as M. bovis, M. africanum and some so-called “Beijing” lineages of M. 

tuberculosis24 (Figure 1C). However, PGLs are not present in a large clade of modern 

TB lineages due to a decisive pks 15/1 gene frameshift.25  

 

3.3 Glycolipids based on trehalose 

 

In addition to PGLs, M. kansasii and “M. canettii” are characterised by the 

production of a range of highly polar antigenic lipooligosaccharides (LOSs) (Figure 

2A, B).26 The main M. kansasii LOS (Figure 2A) has an acylated thirteen sugar 

oligosaccharide, based on trehalose, but that from “M. canettii” is refined down to an 

unrelated acyl trehalose nonasaccharide (Figure 2B). It has been clearly demonstrated, 

for M. marinum and M. kansasii, that these relatively hydrophilic LOSs promote 

biofilm formation and motility.27 These characteristics may have a useful survival role 

for free-living organisms and HGTs may be facilitated by such behaviour. However, 

once an opportunist Mycobacterium had evolved into an obligate parasite, the 

production of LOSs may no longer have conveyed a competitive advantage. Indeed, it 

has been shown that smooth variants of M. kansasii, containing LOSs, are rapidly 

cleared from the organs of infected animals, but rough variants, lacking all LOSs, 

produce chronic systemic infections.28 It is possible to surmise that the loss of LOSs is 

a key event in the transition from a free-living opportunist Mycobacterium to a 
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transmissible obligate pathogen. This may be as significant a change as the pks 15/1 

gene frameshift that resulted in the loss of PGLs.25 

The diacyl trehaloses (DATs) and pentaacyl trehaloses (PATs) are two 

glycolipid classes also based on a trehalose scaffold (Figure 2C).8,18 First 

characterised from M. tuberculosis H37Rv, DATs and PATs are present in 

representative modern clinical strains, as well as in “M. canettii”,8,18 but they have not 

been characterised from M. kansasii. The multimethyl-branched fatty acid 

components of DATs are C24 2,4-dimethyl docosanoic (“mycosanoic”) (Figure 2Ca) 

and C27 3-hydroxy 2,4,6-trimethyl tetracosanoic (“mycolipanolic”) (Figure 2Ca’).8 

The related characteristic main fatty acid in PATs is C27 2,4,6-trimethyl tetracos-2-

enoic (“mycolipenic”) acid (Figure 2Cb).8,18 It is very significant that the absolute 

stereochemistry of the methyl-branched centres in all these acids (Figure 2C) is S in 

contrast to the R configuration in the mycocerosates (Figure 1C). The related sulfated 

acyl trehalose glycolipids (SGLs) also feature multimethyl-branched fatty acid 

components of the S series, examples being the C37 phthioceranic acids and C40 

hydroxyphthioceranic (Figure 2Cc,d).8 Sulfoglycolipids (SGLs) are restricted to 

modern M. tuberculosis and they have not been found in “M. canettii” .29 

 

3.4 Overall summary of lipid correlations 

 

In summary, it is clear that in charting a hypothetical progression from M. 

kansasii, via “M. canettii”, to M. tuberculosis there are identifiable changes in cell 

envelope lipid composition. The challenge is to pinpoint significant modifications that 

may have contributed to the undoubted success of the biotypes of modern tubercle 

bacilli. Scrutiny of the complex profiles of the α-, methoxy- and ketomycolates 

indicates a tightening up both in structural details and distribution of types, but the 

most significant change is undoubtedly the presence of a longer 2-alkyl chain and 

very specific alterations in the proximal and α-mycolate distal chain lengths (Figure 

1A) for “M. canettii” and M. tuberculosis. It is enticing to speculate that the distinct 

α-mycolate (Figure 1A) may be influential in the outer membrane, enhancing links 

with the particular portfolios of free lipids (Figures 1 and 2) found in “M. canettii” 

and M. tuberculosis. The exceptionally long members of the whole phthiocerol family 

(Figure 1B), from the PDIMs of “M. canettii” and M. tuberculosis, also distinguish 

these taxa; in contrast, M. kansasii only has much smaller phthiodiolones (Figure 1B).  
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The apparent structural change in PGLs from M. kansasii to “M. canettii”  has 

been advanced previously as evidence of a close evolutionary linking of these taxa.21 

The principal M. kansasii PGL is truncated by both one and three sugars to produce 

comparable proportions of triglycosyl and monoglycosyl PGLs in “M. canettii” . 

Modern post-bottleneck MTBC biotypes fall into two distinct categories, with respect 

to PGL production; monoglycosyl PGLs are retained in M. africanum, M. bovis and 

the M. tuberculosis “Beijing” and related clades, but a major group of modern M. 

tuberculosis lineages have lost the ability to produce PGLs.25 M. kansasii and “M. 

canettii” both produce a range of highly polar LOSs,26 associated with aquatic 

environments, motility and biofilms; modern MTBC organisms lack these lipids. 

LOSs are based on acylated trehaloses (Figure 2A, B) and several other classes of 

trehalose-based glycolipids are encountered (Figure 2C). The polar antigenic DATs 

and apolar PATs are characteristic of “M. canettii”  and M. tuberculosis sensu strictu, 

but the closely-related, relatively polar, SGLs are limited to the latter category. A 

most significant feature of DATs, PATs and SGLs is the presence of multimethyl-

branched fatty acids of the S series (Figure 2C), rather than the R methyl branches in 

the mycocerosates from the PDIMs and PGLs (Figure 1B, C). It would be interesting 

to determine if the genomic origin of these longer S series multimethyl-branched fatty 

acids, from DATs, PATs and SGLs (Figure 2C), correlates with the shorter S series 

fatty acids found in LOSs (Figure 2A). In view of the fact that the multimethyl-

branched fatty acid components of the PDIMs and PGLs from M. marinum are also of 

the S series,8,18,23 the possibility of HGT from this source should be considered. 

A hypothesis is being advanced, here, for an outline model evolutionary 

pathway for modern tubercle bacilli from an environmental organism, such as M. 

kansasii, via the very diverse group of “smooth” isolates provisionally gathered 

together under the label “M. canettii” . Perceived significant lipid changes, in the taxa 

under consideration, are summarised in Figure 3, but such stylised changes would 

necessarily be much less compartmentalised than indicated. The tremendous diversity 

of extant smooth “M. canettii”  strains16 indicates that a complex labyrinth of 

pathways may have been followed to evolve these taxa. Indeed, extant “M. canettii”  

are not necessarily good representatives of the first mycobacteria that developed a 

preference for mammalian antibiosis/symbiosis rather than free-living; however they 

are the best existing signposts. As noted earlier, bovid metacarpal lesions point to the 

presence of tuberculosis back to 125 ka BP,3 so productive mammalianisation and 
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adaptation of an environmental candidate could have taken place over a period of up 

to 100 ka at least. Modern tuberculosis was distilled out of such a melange, but again 

there may be no single definitive pathway. However, tuberculosis evolution was 

brought into sharper focus during passage through the clear bottleneck,9,10,13 which 

preceded the relatively rapid evolution of all the modern biotypes.9-13 The dearth of 

human skeletal material makes it difficult to delineate the true role of H. sapiens in 

accelerating tuberculosis evolution. Suffice it to say, however, that when settled 

human communities were established, modern tuberculosis found a convenient niche 

from which to expand and diversify. 

 

4. Where on earth did tubercle bacilli evolve and who were the host vectors?  

 

To return to the hypothesis of a possible key zoonotic origin of the M. 

tuberculosis complex, an environmental mycobacterial common ancestor might well 

have prospered in primeval waters. Aqueous suspensions of these bacteria could then 

have been repeatedly passaged through a range of prehistoric animals, such as bovids 

and mastodons.3,4 The possible involvement of protozoa as a direct vector into 

humans has been suggested,14 but such microorganisms could also be incidental 

surrogates facilitating transmission into animals and not specific direct vectors. It has 

been indicated20,21 that tubercle bacilli have probably adopted genes favouring 

survival in anaerobic conditions, thereby encouraging growth in the reduced oxygen 

environment of animal cells. It has been argued that Pleistocene bovids and 

mastodons may have lived in almost symbiosis with ancestral tubercle bacilli for 

many aeons,3,4 perhaps allowing the slow accumulation of variants that caused the 

widespread lesions indicative of tuberculosis. However, the cyclical changes during 

the Ice Ages may have eventually produced an unfavourable environment in which 

the presence of an infecting agent may have contributed significantly to the demise of 

these characteristic animal species. 

The proposed scheme is not in general accord with a recent detailed 

examination of the parallel evolution of genomes from 186 members of the M. 

tuberculosis complex and 4,995 human mitochondria.30 Extrapolation of the results 

were interpreted to suggest that TB and humans co-evolved “out of Africa”, 

commencing ~70 ka ago.30 However, parallel evolution is not necessarily linked co-
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evolution and no definitive evidence was advanced to substantiate the presence of any 

human tuberculosis going back as far as 70 ka BP.  

The scenario, outlined in this communication, is just one of many zoonotic 

possibilities, but the general outcome could be an obligate animal pathogen causing a 

disease that is now recognised as tuberculosis. On the balance of evidence, a major 

ancient reservoir of this global disease would appear to be a range of prehistoric large 

animals, spread throughout the Northern Hemisphere.3,4 The transmission to humans 

could well have been through ingestion of infected animal material, analogous to the 

way that modern bovine tuberculosis can be contracted by drinking raw milk or eating 

undercooked infected meat. The eventual gathering together of human communities 

could have facilitated a transition to the inter-person spread of modern human 

tuberculosis.  
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Figure legends 

 
Figure 1. Representative structures of mycolic acids and phthiocerol and 

phenolphthiocerol-based lipids. (A) Mycolic acids, showing chain length differences 

between M. kansasii α-mycolates and those from “M. canettii”  and M. tuberculosis. 

The main methoxy- and ketomycolates from M. tuberculosis are shown; those from 

M. kansasii are essentially similar. (B) Dimycocerosates of the main M. kansasii 

phthiodiolone and M. tuberculosis and “M. canettii” phthiocerol As. (C) Phenolic 

glycolipids (PGLs) from M. kansasii, “M. canettii”  and M. bovis. 

 

Figure 2. Representative structures of trehalose-based glycolipids. (A) The main 

lipooligosaccharide (LOS) from M. kansasii. (B) The main lipooligosaccharide (LOS) 

from “M. canettii” . (C) The main diacyl (DAT), pentaacyl (PAT) and sulfated acyl 

(SGL) trehalose glycolipids. The DAT with C24-mycosanoate, a), is accompanied by a 

DAT with C27-mycolipanolate, a’).  

 

Figure 3. Correlation of lipid composition of M. kansasii, “M. canettii” and M. 

tuberculosis in the context of hypothetical linked evolution. Cartoon structures aim to 

reflect the clear differences in the α-mycolates of M. kansasii, in comparison with 

those of “M. canettii”  and M. tuberculosis; shown in detail in Figure 1A. The 

numbers of sugars in particular LOSs and PGLs are shown in brackets with an 

asterisk, e.g. LOS (13)*. 
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