92 research outputs found
Asymmetrical Flow Field-Flow Fractionation on Virus and Virus-Like Particle Applications
Asymmetrical flow field-flow fractionation (AF4) separates sample components based on their sizes in the absence of a stationary phase. It is well suited for high molecular weight samples such as virus-sized particles. The AF4 experiment can potentially separate molecules within a broad size range (~103â109 Da; particle diameter from 2 nm to 0.5â1 Îźm). When coupled to light scattering detectors, it enables rapid assays on the size, size distribution, degradation, and aggregation of the studied particle populations. Thus, it can be used to study the quality of purified viruses and virus-like particles. In addition to being an advanced analytical characterization technique, AF4 can be used in a semi-preparative mode. Here, we summarize and provide examples on the steps that need optimization for obtaining good separation with the focus on virus-sized particles
ICTV Virus Taxonomy Profile : Cystoviridae
The family Cystoviridae includes enveloped viruses with a tri-segmented dsRNA genome and a double-layered protein capsid. The innermost protein shell is a polymerase complex responsible for genome packaging, replication and transcription. Cystoviruses infect Gram-negative bacteria, primarily plant-pathogenic Pseudomonas syringae strains. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Cystoviridae, which is available at http://www. ictv. global/report/cystoviridae.Non peer reviewe
Asymmetrical Flow Field-Flow Fractionation on Virus and Virus-Like Particle Applications
Asymmetrical flow field-flow fractionation (AF4) separates sample components based on their sizes in the absence of a stationary phase. It is well suited for high molecular weight samples such as virus-sized particles. The AF4 experiment can potentially separate molecules within a broad size range (~103â109 Da; particle diameter from 2 nm to 0.5â1 Îźm). When coupled to light scattering detectors, it enables rapid assays on the size, size distribution, degradation, and aggregation of the studied particle populations. Thus, it can be used to study the quality of purified viruses and virus-like particles. In addition to being an advanced analytical characterization technique, AF4 can be used in a semi-preparative mode. Here, we summarize and provide examples on the steps that need optimization for obtaining good separation with the focus on virus-sized particles
Structural comparison strengthens the higher-order classification of proteases related to chymotrypsin
Specific cleavage of proteins by proteases is essential for several cellular, physiological, and viral processes. Chymotrypsin-related proteases that form the PA clan in the MEROPS classification of proteases is one of the largest and most diverse group of proteases. The PA clan comprises serine proteases from bacteria, eukaryotes, archaea, and viruses and chymotrypsin-related cysteine proteases from positive-strand RNA viruses. Despite low amino acid sequence identity, all PA clan proteases share a conserved double beta-barrel structure. Using an automated structure-based hierarchical clustering method, we identified a common structural core of 72 amino acid residues for 143 PA clan proteases that represent 12 protein families and 11 subfamilies. The identified core is located around the catalytic site between the two beta-barrels and resembles the structures of the smallest PA clan proteases. We constructed a structure-based distance tree derived from the properties of the identified common core. Our structure-based analyses support the current classification of these proteases at the subfamily level and largely at the family level. Structural alignment and structure-based distance trees could thus be used for directing objective classification of PA clan proteases and to strengthen their higher order classification. Our results also indicate that the PA clan proteases of positive-strand RNA viruses are related to cellular heat-shock proteases, which suggests that the exchange of protease genes between viruses and cells might have occurred more than once.Peer reviewe
Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of âviral lineagesâ, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 Ă 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection
Dual Role of a Viral Polymerase in Viral Genome Replication and Particle Self-Assembly
Double-stranded RNA (dsRNA) viruses package several RNA-dependent RNA polymerases (RdRp) together with their dsRNA genome into an icosahedral protein capsid known as the polymerase complex. This structure is highly conserved among dsRNA viruses but is not found in any other virus group. RdRp subunits typically interact directly with the main capsid proteins, close to the 5-fold symmetric axes, and perform viral genome replication and transcription within the icosahedral protein shell. In this study, we utilized Pseudomonas phage Phi 6, a well-established virus self-assembly model, to probe the potential roles of the RdRp in dsRNA virus assembly. We demonstrated that Phi 6 RdRp accelerates the polymerase complex self-assembly process and contributes to its conformational stability and integrity. We highlight the role of specific amino acid residues on the surface of the RdRp in its incorporation during the self-assembly reaction. Substitutions of these residues reduce RdRp incorporation into the polymerase complex during the self-assembly reaction. Furthermore, we determined that the overall transcription efficiency of the Phi 6 polymerase complex increased when the number of RdRp subunits exceeded the number of genome segments. These results suggest a mechanism for RdRp recruitment in the polymerase complex and highlight its novel role in virion assembly, in addition to the canonical RNA transcription and replication functions. IMPORTANCE Double-stranded RNA viruses infect a wide spectrum of hosts, including animals, plants, fungi, and bacteria. Yet genome replication mechanisms of these viruses are conserved. During the infection cycle, a proteinaceous capsid, the polymerase complex, is formed. An essential component of this capsid is the viral RNA polymerase that replicates and transcribes the enclosed viral genome. The polymerase complex structure is well characterized for many double-stranded RNA viruses. However, much less is known about the hierarchical molecular interactions that take place in building up such complexes. Using the bacteriophage Phi 6 self-assembly system, we obtained novel insights into the processes that mediate polymerase subunit incorporation into the polymerase complex for generation of functional structures. The results presented pave the way for the exploitation and engineering of viral self-assembly processes for biomedical and synthetic biology applications. An understanding of viral assembly processes at the molecular level may also facilitate the development of antivirals that target viral capsid assembly.Peer reviewe
RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2â˛-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine
RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2â˛-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine
- âŚ