23 research outputs found

    The Possibility of De Novo Assembly of the Genome and Population Genomics of the Mangrove Rivulus, Kryptolebias marmoratus

    No full text
    How organisms adapt to the range of environments they encounter is a fundamental question in biology. Elucidating the genetic basis of adaptation is a difficult task, especially when the targets of selection are not known. Emerging sequencing technologies and assembly algorithms facilitate the genomic dissection of adaptation and population differentiation in a vast array of organisms. Here we describe the attributes ofKryptolebias marmoratus, one of two known self-fertilizing hermaphroditic vertebrates that make this fish an attractive genetic system and a model for understanding the genomics of adaptation. Long periods of selfing have resulted in populations composed of many distinct naturally homozygous strains with a variety of identifiable, and apparently heritable, phenotypes. There also is strong population genetic structure across a diverse range of mangrove habitats, making this a tractable system in which to study differentiation both within and among populations. The ability to rearK. marmoratusin the laboratory contributes further to its value as a model for understanding the genetic drivers for adaptation. To date, microsatellite markers distinguish wild isogenic strains but the naturally high homozygosity improves the quality ofde novoassembly of the genome and facilitates the identification of genetic variants associated with phenotypes. Gene annotation can be accomplished with RNA-sequencing data in combination withde novogenome assembly. By combining genomic information with extensive laboratory-based phenotyping, it becomes possible to map genetic variants underlying differences in behavioral, life-history, and other potentially adaptive traits. Emerging genomic technologies provide the required resources for establishingK. marmoratusas a new model organism for behavioral genetics and evolutionary genetics research

    Evolution of structural rearrangements in prostate cancer intracranial metastases

    No full text
    Abstract Intracranial metastases in prostate cancer are uncommon but clinically aggressive. A detailed molecular characterization of prostate cancer intracranial metastases would improve our understanding of their pathogenesis and the search for new treatment strategies. We evaluated the clinical and molecular characteristics of 36 patients with metastatic prostate cancer to either the dura or brain parenchyma. We performed whole genome sequencing (WGS) of 10 intracranial prostate cancer metastases, as well as WGS of primary prostate tumors from men who later developed metastatic disease (n = 6) and nonbrain prostate cancer metastases (n = 36). This first whole genome sequencing study of prostate intracranial metastases led to several new insights. First, there was a higher diversity of complex structural alterations in prostate cancer intracranial metastases compared to primary tumor tissues. Chromothripsis and chromoplexy events seemed to dominate, yet there were few enrichments of specific categories of structural variants compared with non-brain metastases. Second, aberrations involving the AR gene, including AR enhancer gain were observed in 7/10 (70%) of intracranial metastases, as well as recurrent loss of function aberrations involving TP53 in 8/10 (80%), RB1 in 2/10 (20%), BRCA2 in 2/10 (20%), and activation of the PI3K/AKT/PTEN pathway in 8/10 (80%). These alterations were frequently present in tumor tissues from other sites of disease obtained concurrently or sequentially from the same individuals. Third, clonality analysis points to genomic factors and evolutionary bottlenecks that contribute to metastatic spread in patients with prostate cancer. These results describe the aggressive molecular features underlying intracranial metastasis that may inform future diagnostic and treatment approaches

    Data from: Novel conserved genotypes correspond to antibiotic resistance phenotypes of E. coli clinical isolates

    No full text
    Current efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover SNPs unanimously conserved in each pool. The multidrug-resistant pools were genotypically similar to SMS-3-5, a previously sequenced multidrug-resistant isolate from a polluted environment. The similarity was evenly spread across the entire genome and not limited to plasmid or pathogenicity island loci. Among the pools of clinical isolates, genomic variation was concentrated adjacent to previously reported inversion and duplication differences between the SMS-3-5 isolate and the drug-susceptible laboratory strain, DH10B. Single nucleotide polymorphisms (SNPs) that result in non-synonymous changes in gyrA (encoding the well-known S83L allele associated with fluoroquinolone resistance), mutM, ligB, and recG were unanimously conserved in every fluoroquinolone-resistant pool. Alleles of the latter three genes are tightly linked among most sequenced E. coli genomes, and had not been implicated in antibiotic resistance previously. The changes in these genes map to amino acid positions in alpha helices that are involved in DNA binding. Plasmid- encoded complementation of null strains with either allelic variant of mutM or ligB resulted in variable responses to ultraviolet light or hydrogen peroxide treatment as markers of induced DNA damage, indicating their importance in DNA metabolism and revealing a potential mechanism for fluoroquinolone resistance. Our approach uncovered evidence that additional DNA binding enzymes may contribute to fluoroquinolone resistance and further implicate environmental bacteria as a reservoir for antibiotic resistance
    corecore