26 research outputs found

    Studying synthesis confinement effects on the internal structure of nanogels in computer simulations

    Full text link
    We study the effects of droplet finite size on the structure of nanogel particles synthesized by random crosslinking of molecular polymers diluted in nanoemulsions. For this, we use a bead-spring computer model of polymer-like structures that mimics the confined random crosslinking process corresponding to irradiation- or electrochemically-induced crosslinking methods. Our results indicate that random crosslinking under strong confinement can lead to unusual nanogel internal structures, with a central region less dense than the external one, whereas under moderate confinement the resulting structure has a denser central region. We analyze the topology of the polymer networks forming nanogel particles with both types of architectures, their overall structural parameters, their response to the quality of the solvent and compare the cases of non-ionic and ionic systems

    Suspensions of magnetic nanogels at zero field: equilibrium structural properties

    Full text link
    Magnetic nanogels represent a cutting edge of magnetic soft matter research due to their numerous potential applications. Here, using Langevin dynamics simulations, we analyse the influence of magnetic nanogel concentration and embedded magnetic particle interactions on the self-assembly of magnetic nanogels at zero field. For this, we calculated radial distribution functions and structure factors for nanogels and magnetic particles within them. We found that, in comparison to suspensions of free magnetic nanoparticles, where the self-assembly is already observed if the interparticle interaction strength exceeds the thermal fluctuations by approximately a factor of three, self-assembly of magnetic nanogels only takes place by increasing such ratio above six. This magnetic nanogel self-assembly is realised by means of favourable close contacts between magnetic nanoparticles from different nanogels. It turns out that for high values of interparticle interactions, corresponding to the formation of internal rings in isolated nanogels, in their suspensions larger magnetic particle clusters with lower elastic penalty can be formed by involving different nanogels. Finally, we show that when the self-assembly of these nanogels takes place, it has a drastic effect on the structural properties even if the volume fraction of magnetic nanoparticles is low.Comment: International Conference on Magnetic Fluids - ICMF 201

    Derivation, Characterization, and Stable Transfection of Induced Pluripotent Stem Cells from Fischer344 Rats

    Get PDF
    The rat represents an important animal model that, in many respects, is superior to the mouse for dissecting behavioral, cardiovascular and other physiological pathologies relevant to humans. Derivation of induced pluripotent stem cells from rats (riPS) opens the opportunity for gene targeting in specific rat strains, as well as for the development of new protocols for the treatment of different degenerative diseases. Here, we report an improved lentivirus-based hit-and-run riPS derivation protocol that makes use of small inhibitors of MEK and GSK3. We demonstrate that the excision of proviruses does not affect either the karyotype or the differentiation ability of these cells. We show that the established riPS cells are readily amenable to genetic manipulations such as stable electroporation. Finally, we propose a genetic tool for an improvement of riPS cell quality in culture. These data may prompt iPS cell-based gene targeting in rat as well as the development of iPS cell-based therapies using disease models established in this species

    Suppression of Metacaspase- and Autophagy-Dependent Cell Death Improves Stress-Induced Microspore Embryogenesis in Brassica napus

    Get PDF
    Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs

    Compressibility of ferrofluids: Towards a better understanding of structural properties

    No full text
    This paper addresses a computational method aimed at obtaining the isothermal compressibility of ferrofluids by means of molecular dynamics (MD) simulations. We model ferrofluids as a system of dipolar soft spheres and carry out MD simulations in the NPT ensemble. The obtained isothermal compressibility computed via volume fluctuations provides us with a strong evidence that dipolar interactions lead to a higher compressibility of dipolar soft sphere systems: the stronger the dipolar interactions, the bigger is the deviation of the compressibility from the one of a system with no dipoles. Furthermore, we use the isothermal compressibility to calculate the structure factor of ferrofluids at low values of wave vectors, i.e. in the range where it is difficult to predict its behaviour because of a problem with accounting for long-range particle correlations that give the main contribution to the structure factor in this range. Our approach based on the interpolation of the structure factor and the computed isothermal compressibility allows us to obtain the smooth structure factor in the range of low wave vectors and the reliable fractal dimension of the clusters formed in the system

    Metacaspases versus caspases in development and cell fate regulation

    No full text
    Initially found to be critically involved in inflammation and apoptosis, caspases have since then been implicated in the regulation of various signaling pathways in animals. How caspases and caspase-mediated processes evolved is a topic of great interest and hot debate. In fact, caspases are just the tip of the iceberg, representing a relatively small group of mostly animal-specific enzymes within a broad family of structurally related cysteine proteases (family C14 of CD clan) found in all kingdoms of life. Apart from caspases, this family encompasses para- and metacaspases, and all three groups of proteases exhibit significant variation in biochemistry and function in vivo. Notably, metacaspases are present in all eukaryotic lineages with a remarkable absence in animals. Thus, metacaspases and caspases must have adapted to operate under distinct cellular and physiological settings. Here we discuss biochemical properties and biological functions of metacaspases in comparison to caspases, with a major focus on the regulation of developmental aspects in plants versus animals.Research in our laboratories is supported by grants from Carl Tryggers Foundation (to EAM), the Swedish Research Council (to HT and PVB), Knut and Alice Wallenberg Foundation (to PVB), Olle Engkvist Foundation (to PVB), the Swedish Foundation for Strategic Research (to PVB), the Trees and Crops for the Future (TC4F) programme (to PVB), Spanish Ministry of Economy, Industry and Competitiveness (projects AGL2016-78002, RyC 2014-1658 SEV‐2015‐0533; to NSC) and the CERCA Programme/Generalitat de Catalunya (to NSC).Peer reviewe

    Running Head: Metacaspases and autophagy in microspore embryogenesis

    No full text
    14 p.-7 fig.Microspore embryogenesis is a biotechnological process that allows to rapidly obtain doubled haploid plants for breeding programs. The process is initiated by the application of stress treatment which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), increase in MCA proteolytic activity, and activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programmes.The work was supported by the Spanish National Agency of Research (Agencia Estatal de Investigación, AEI) and European Regional Development Fund (ERDF/FEDER) [grant AGL2017- 82447-R to PST], and by the Swedish Foundation for Strategic Research and the research program “Crops for the future” [grants to PVB].Peer reviewe
    corecore