143 research outputs found
Recommended from our members
Electronic materials based on conducting metallopolymers and self-assembly
Conducting metallopolymers (CMPs) have been extensively studied due to their potential for various applications in sensing, catalysis, light-emitting diodes, and energy harvesting and storage. The incorporation of metal centers into conjugated organic polymer backbones not only makes these materials multi-functional, but also changes the properties, such as electroactivity and conductivity. In this work, we aim to take advantage of the direct electronic interaction between metal centers and polymer backbones in these metallopolymers to make novel materials that could be used for photovoltaic and spintronic applications. Furthermore, a fundamental study on the interactive role of transition metals in conducting metallopolymers has been conducted, which could help to provide insights for the rational design of metallopolymers for certain applications. Charge transfer in hybrid photovoltaics is often inhibited by the capping ligands on inorganic semiconductors. To bypass the ligand effect, my study was focused on preparing a conducting metallopolymer, in which metal ions are directly bound to the conjugated organic backbone. These metal ions will serve as nucleation or seed points upon which the inorganic semiconductor can grow directly within the polymer matrix. This fabrication method provides materials with direct bonds between the inorganic semiconductor and the conducting polymer backbone and therefore results in direct electronic communication between the donor and acceptor. With this material, the charge transfer limited by capping ligands could be overcome and can result in highly efficient devices when utilized in solar cells. Besides the efforts to harvest energy form renewable resources, changing the way that we use energy (e.g., in lighting and information storage) could also help to reduce our energy demand. The bistability offered by spin-crossover (SCO) complexes has resulted in sustained research interest due to potential applications in molecular electronics such as memory storage. Interested in making memory devices with a bottom up approach, we have designed and prepared CMPs that are not only conductive but also possess spin-crossover behavior. The novelty of this study lies in the fact that spin-switching could be possibly obtained by changing the oxidation states of metal centers, which could be done at room temperature, offering a new method for spin switching compared to conventional methods for SCO such as in thermal-induced spin transition. To study the charge delocalization and charge transport in CMPs, a series of conducting polymers of Schiff-base ligands and metal complexes have been prepared and characterized. Our successful syntheses of ligand polymers allows for full characterization and direct comparison of these polymers to the corresponding metal-containing polymers, from which the role of the metal centers is elucidated. The effects of conjugation length on electrochemical and spectroscopic properties are also investigated and discussed.Chemistr
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Conversion of Lignocellulosic Biomass in Biobutanol by a Novel Thermal Process
This work aims at demonstrating the possibility of producing 2-butanol from lignocellulosic biomass through a new thermochemical approach. The production of biobutanol was carried out using different lignocellulosic feedstock through a 3-step process: first the whole lignocellulosic biomass is hydrolyzed under acid catalyst to produce levulinates, then the levulinates go through decarboxylation to produce 2-butanone which is, in a final step, reduced to produce of 2-butanol. The experimental conditions for the first two steps of the process were optimized using the response surface methodology (RSM). The latter could represent an opportunity for the production of economical second-generation butanol without having to go through the classical pathway requiring the production of sugar prior to microbial conversion.The authors are grateful for the financial support to MITACS (Grant number ITO3931) and for the grant to the Natural Sciences and Engineering Research Council of Canada (NSERC, Grant number EGP 487206-15)
Occupation of racial grief, loss as a resource : learning from ‘The Combahee River Collective Black Feminist Statement'
The methodology of ‘occupation’ through rereading The Combahee River Collective Black Feminist
Statement (The Combahee River Collective, in: James,
Sharpley-Whiting (eds) The Black Feminist Reader.
Blackwell Publishers Ltd., Oxford, pp 261–270, 1977)
demonstrates the necessity of temporal linkages to historical Black feminist texts and the wisdom of Black feminist
situated knowers. This paper argues that racism produces
grief and loss and as long as there is racism, we all remain
in racial grief and loss. However, in stark contrast to the
configuration of racial grief and loss as something to get
over, perhaps grief and loss can be thought about differently, for example, in terms of racial grief and loss as a
resource. This paper questions Western Eurocentric paternalistic responses to Black women’s ‘talk about their
feelings of craziness… [under] patriarchal rule’ (The
Combahee River Collective 1977: 262) and suggests
alternative ways of thinking about the psychological
impact of grief and loss in the context of racism. In this
paper, a Black feminist occupation of racial grief and loss
includes the act of residing within, and the act of working
with the constituent elements of racial grief and loss. The
proposal is that an occupation of racial grief and loss is a
paradoxical catalyst for building a twenty-first century
global intersectional Black feminist movement
Timing of host feeding drives rhythms in parasite replication
Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the hosts' peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the hosts' peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience
Phylogenetic Resolution and Quantifying the Phylogenetic Diversity and Dispersion of Communities
Conservation biologists and community ecologists have increasingly begun to quantify the phylogenetic diversity and phylogenetic dispersion in species assemblages. In some instances, the phylogenetic trees used for such analyses are fully bifurcating, but in many cases the phylogenies being used contain unresolved nodes (i.e. polytomies). The lack of phylogenetic resolution in such studies, while certainly not preferred, is likely to continue particularly for those analyzing diverse communities and datasets with hundreds to thousands of taxa. Thus it is imperative that we quantify potential biases and losses of statistical power in studies that use phylogenetic trees that are not completely resolved. The present study is designed to meet both of these goals by quantifying the phylogenetic diversity and dispersion of simulated communities using resolved and gradually ‘unresolved’ phylogenies. The results show that: (i) measures of community phylogenetic diversity and dispersion are generally more sensitive to loss of resolution basally in the phylogeny and less sensitive to loss of resolution terminally; and (ii) the loss of phylogenetic resolution generally causes false negative results rather than false positives
Elastic Scattering Time–Gated Multi–Static Lidar Scheme for Mapping and Identifying Contaminated Atmospheric Droplets
Numerical simulations are performed to determine the angular dependence of the MIe scattering cross-section intensities of pure water droplets and pollutants such as contaminated water droplets and black carbon as a function of the wavelength of the incident laser light, complex refractive index, and size of the scatterer. Our results show distinct scattering features when varying the various scattering parameters, thereby allowing the identification of the scattering particle with specific application to the identification of atmospheric pollutants including black carbon. Regardless of the type of scatterer, the scattering intensity is nearly uniform with a slight preference for forward scattering when the size of the particle is within 20% of the incident laser’s wavelength. The scattering patterns start to exhibit distinguishable features when the size parameter equals 1.77, corresponding to an incident laser wavelength of 0.355 μm and a particle radius of 0.1 μm. The patterns then become increasingly unique as the size parameter increases. Based on these calculations, we propose a time-gated lidar scheme consisting of multiple detectors that can rotate through a telescopic angle and be placed equidistantly around the scattering particles to collect the backscattered light and a commercially available Q-switched laser system emitting at tunable laser wavelengths. By using a pulsed laser with 10-ns pulse duration, our scheme could distinguish scattering centers that are at least 3 m apart. Our scheme called MIe Scattering Time-gated multi-Static LIDAR (MISTS–LIDAR) would be capable of identifying the type of atmospheric pollutant and mapping its location with a spatial resolution of a few meters.fals
The Chemical Evolution of the La0.6Sr0.4CoO3−δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity
© The Author(s) 2018Owing to its extraordinary high activity for catalysing the oxygen exchange reaction, strontium doped LaCoO3 (LSC) is one of the most promising materials for solid oxide fuel cell (SOFC) cathodes. However, under SOFC operating conditions this material suffers from performance degradation. This loss of electrochemical activity has been extensively studied in the past and an accumulation of strontium at the LSC surface has been shown to be responsible for most of the degradation effects. The present study sheds further light onto LSC surface changes also occurring under SOFC operating conditions. In-situ near ambient pressure X-ray photoelectron spectroscopy measurements were conducted at temperatures between 400 and 790 °C. Simultaneously, electrochemical impedance measurements were performed to characterise the catalytic activity of the LSC electrode surface for O2 reduction. This combination allowed a correlation of the loss in electro-catalytic activity with the appearance of an additional La-containing Sr-oxide species at the LSC surface. This additional Sr-oxide species preferentially covers electrochemically active Co sites at the surface, and thus very effectively decreases the oxygen exchange performance of LSC. Formation of precipitates, in contrast, was found to play a less important role for the electrochemical degradation of LSC.Fonds zur Förderung der wissenschaftlichen Forschung (FWF)212921411
- …
