44 research outputs found
Targeting ferroptosis: a promising strategy to overcome drug resistance in breast cancer
Breast cancer is one of the most prevalent malignancies affecting women worldwide, with its incidence increasingly observed in younger populations. In recent years, drug resistance has emerged as a significant challenge in the treatment of breast cancer, making it a central focus of contemporary research aimed at identifying strategies to overcome this issue. Growing evidence indicates that inducing ferroptosis through various mechanisms, particularly by inhibiting System Xc-, depleting glutathione (GSH), and inactivating glutathione peroxidase 4 (GPX4), holds great potential in overcoming drug resistance in breast cancer. It is anticipated that therapies targeting ferroptosis will emerge as a promising strategy to reverse tumor resistance, offering new hope for breast cancer patients. This review will explore the latest advancements in understanding ferroptosis in the context of breast cancer drug resistance, with a particular emphasis on the roles of ferroptosis inducers and inhibitors, and the impact of ferroptotic pathways on overcoming drug resistance in breast cancer
Changes in bacterial community of soil induced by long-term straw returning
Straw returning is an effective way to improve soil quality. Whether the bacterial community development has been changed by long-term straw returning in non-calcareous soil is not clear. In this study, the following five treatments were administered: soil without fertilizer (CK); wheat and corn straw returning (WC); wheat straw returning with 276 kg N ha−1 yr−1 (WN); manure, 60,000 kg ha−1 pig manure compost (M) and wheat and corn straw returning with 276 kg N ha−1 yr−1 (WCN). The high-throughput 16S rRNA sequencing technology was used to evaluate the bacterial communities. The results showed that the community was composed mostly of two dominant groups (Proteobacteria and Acidobacteria). Bacterial diversity increased after the application of straw and manure. Principal component analyses revealed that the soil bacterial community differed significantly between treatments. The WCN treatment showed relatively higher total soil N, available P, available K, and organic carbon and invertase, urease, cellulase activities and yield than the WC treatment. Our results suggested that application of N fertilizer to straw returning soil had significantly higher soil fertility and enzyme activity than straw returning alone, which resulted in a different bacterial community composition, Stenotrophomonas, Pseudoxanthomonas, and Acinetobacter which were the dominant genera in the WC treatment while Candidatus, Koribacter and Granulicella were the dominant genera in the WCN treatment. To summarize, wheat and maize straw returning with N fertilizer would be the optimum proposal for improving soil quality and yield in the future in non-calcareous fluro-acquic-wheat and maize cultivated soils in the North China Plain in China
Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China:lessons learnt and international expert recommendations
Tracheal intubation in coronavirus disease 2019 (COVID-19) patients creates a risk to physiologically compromised patients and to attending healthcare providers. Clinical information on airway management and expert recommendations in these patients are urgently needed. By analysing a two-centre retrospective observational case series from Wuhan, China, a panel of international airway management experts discussed the results and formulated consensus recommendations for the management of tracheal intubation in COVID-19 patients. Of 202 COVID-19 patients undergoing emergency tracheal intubation, most were males (n=136; 67.3%) and aged 65 yr or more (n=128; 63.4%). Most patients (n=152; 75.2%) were hypoxaemic (Sao2 <90%) before intubation. Personal protective equipment was worn by all intubating healthcare workers. Rapid sequence induction (RSI) or modified RSI was used with an intubation success rate of 89.1% on the first attempt and 100% overall. Hypoxaemia (Sao2 <90%) was common during intubation (n=148; 73.3%). Hypotension (arterial pressure <90/60 mm Hg) occurred in 36 (17.8%) patients during and 45 (22.3%) after intubation with cardiac arrest in four (2.0%). Pneumothorax occurred in 12 (5.9%) patients and death within 24 h in 21 (10.4%). Up to 14 days post-procedure, there was no evidence of cross infection in the anaesthesiologists who intubated the COVID-19 patients. Based on clinical information and expert recommendation, we propose detailed planning, strategy, and methods for tracheal intubation in COVID-19 patients
An image processing method for extraction of the stresswave reflection period
The stress wave reflection method is widely used in the detection of structure size and integrity due to its advantages of low environmental impact and convenience. The detection accuracy depends on the accurate extraction of the stress wave reflection period. The traditional peak-peak method (PPM) measures the time interval between the first two peaks of the reflected waves to extract the reflection period. However, human interpretation is not avoidable for identifying the weak peak due to signal energy leaks into the surrounding environment. This paper proposes an algorithm for automatic extraction of the stress wave reflection period based on image processing to avoid human interference. The image is the short-time Fourier transform (STFT) spectrogram of the reflected wave signal after applying wavelet denoising and quadratic self-correlation operations. The edge detection method of image processing is used to extract the periodically occurring trough in the image. Graying and filtering are performed to eliminate interference. The frequency of the trough distribution is calculated by using the fast Fourier transform (FFT), and then the reflection period of the stress wave is obtained. The effectiveness and accuracy of the proposed method are validated by measuring the different lengths of two buried metal piles in soil. Comparing with the existing method of extracting the stress wave reflection period, this new algorithm comprehensively utilizes the time-frequency domain information of the stress wave reflection signal
An Image Processing Method for Extraction of the Stress Wave Reflection Period
The stress wave reflection method is widely used in the detection of structure size and integrity due to its advantages of low environmental impact and convenience. The detection accuracy depends on the accurate extraction of the stress wave reflection period. The traditional peak–peak method (PPM) measures the time interval between the first two peaks of the reflected waves to extract the reflection period. However, human interpretation is not avoidable for identifying the weak peak due to signal energy leaks into the surrounding environment. This paper proposes an algorithm for automatic extraction of the stress wave reflection period based on image processing to avoid human interference. The image is the short-time Fourier transform (STFT) spectrogram of the reflected wave signal after applying wavelet denoising and quadratic self-correlation operations. The edge detection method of image processing is used to extract the periodically occurring trough in the image. Graying and filtering are performed to eliminate interference. The frequency of the trough distribution is calculated by using the fast Fourier transform (FFT), and then the reflection period of the stress wave is obtained. The effectiveness and accuracy of the proposed method are validated by measuring the different lengths of two buried metal piles in soil. Comparing with the existing method of extracting the stress wave reflection period, this new algorithm comprehensively utilizes the time–frequency domain information of the stress wave reflection signal.</jats:p
Effect of viscoelasticity on the foaming behaviour of long-chain branched polypropylene with different branching degrees analysed by using bubble-growth modelling
Time-varying modeling and intelligent compensation control of singletendon-sheath structure of surgical robot
The inaccurate force and position control of tendon sheath system (TSS) due to nonlinear friction during surgery seriously hinders its development in the field of precision surgical robots. To this end, this paper proposes a time-varying bending angle estimation method under the state of sensorless offline identification combined with robot kinematics by analyzing the friction of the TSS and the deformation of the robot during the movement, and establishes a force and position transfer model with time-varying path trajectory (SJM model). The model uses B-spline curve to fit tendon-sheath trajectory. In order to further improve the control accuracy of force and position, a new intelligent feedforward control strategy that integrates the SJM model and a neural network algorithm is proposed. In order to gain an in-depth understanding of the transmission process of force and position and to demonstrate the validity of the SJM model, an experimental platform for the TSS was built. A feedforward control system under the MATLAB environment was built with the aim of verifying the accuracy of the intelligent feedforward control strategy. The system innovatively combines the SJM model with BP and RBF neural networks, respectively. The experimental results showed that the correlation coefficients (R2) of force and position transfer are above 99.10% and 99.48%, respectively. Ultimately, we compared the intelligent feedforward and intelligent control strategy under a single neural network, and observed that the intelligent feedforward control strategy has a better effect. </jats:p
Diagnosing and tracing the pathogens of infantile infectious diarrhea by amplicon sequencing
Abstract
Background
Metagenomic methods have been widely applied to study the relationship between gut microbiota and human health. To test whether metagenomic amplicon sequencing could be an effective method to diagnose and trace the pathogens of infantile infectious diarrhea, the fecal samples of 20 diarrheic and 13 healthy infants were collected. After 16S rDNA amplicon sequencing, diversity analyses were carried out. The relationship between the pathogens of the gut microbiota and geography of patients was analyzed.
Results
The diversity of the gut microbiota in diarrheic infants was significantly lower than that of the gut microbiota in healthy ones and that, the composition of gut microbiota in the diarrheic group was significantly different than that of the gut microbiota in the healthy group. The results also indicated that in some of the patients, the amounts of Escherichia coli were significantly increased in the diarrheic infants, which was in agreement with the result of the qPCR analysis. Using a geographical map, we found some patterns between pathogen source and geographical location. This is helpful for an early warning of the disease.
Conclusions
The method of using high-throughput DNA sequencing and a comprehensive and deep data analysis can be a new strategy to detect and trace pathogens in infantile infectious diarrhea.
Trial registration Diagnosing and tracing the pathogens of infantile infectious diarrhea by amplicon sequencing, ChiCTR-DDD-1701088, Registered 16 March 2017-Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=18477
</jats:sec
Changes in bacterial community of soil induced by long-term straw returning
ABSTRACT: Straw returning is an effective way to improve soil quality. Whether the bacterial community development has been changed by long-term straw returning in non-calcareous soil is not clear. In this study, the following five treatments were administered: soil without fertilizer (CK); wheat and corn straw returning (WC); wheat straw returning with 276 kg N ha−1 yr−1 (WN); manure, 60,000 kg ha−1 pig manure compost (M) and wheat and corn straw returning with 276 kg N ha−1 yr−1 (WCN). The high-throughput 16S rRNA sequencing technology was used to evaluate the bacterial communities. The results showed that the community was composed mostly of two dominant groups (Proteobacteria and Acidobacteria). Bacterial diversity increased after the application of straw and manure. Principal component analyses revealed that the soil bacterial community differed significantly between treatments. The WCN treatment showed relatively higher total soil N, available P, available K, and organic carbon and invertase, urease, cellulase activities and yield than the WC treatment. Our results suggested that application of N fertilizer to straw returning soil had significantly higher soil fertility and enzyme activity than straw returning alone, which resulted in a different bacterial community composition, Stenotrophomonas, Pseudoxanthomonas, and Acinetobacter which were the dominant genera in the WC treatment while Candidatus, Koribacter and Granulicella were the dominant genera in the WCN treatment. To summarize, wheat and maize straw returning with N fertilizer would be the optimum proposal for improving soil quality and yield in the future in non-calcareous fluro-acquic-wheat and maize cultivated soils in the North China Plain in China
Diagnosing and tracing the pathogens of infantile infectious diarrhea by amplicon sequencing
Abstract Background Metagenomic methods have been widely applied to study the relationship between gut microbiota and human health. To test whether metagenomic amplicon sequencing could be an effective method to diagnose and trace the pathogens of infantile infectious diarrhea, the fecal samples of 20 diarrheic and 13 healthy infants were collected. After 16S rDNA amplicon sequencing, diversity analyses were carried out. The relationship between the pathogens of the gut microbiota and geography of patients was analyzed. Results The diversity of the gut microbiota in diarrheic infants was significantly lower than that of the gut microbiota in healthy ones and that, the composition of gut microbiota in the diarrheic group was significantly different than that of the gut microbiota in the healthy group. The results also indicated that in some of the patients, the amounts of Escherichia coli were significantly increased in the diarrheic infants, which was in agreement with the result of the qPCR analysis. Using a geographical map, we found some patterns between pathogen source and geographical location. This is helpful for an early warning of the disease. Conclusions The method of using high-throughput DNA sequencing and a comprehensive and deep data analysis can be a new strategy to detect and trace pathogens in infantile infectious diarrhea. Trial registration Diagnosing and tracing the pathogens of infantile infectious diarrhea by amplicon sequencing, ChiCTR-DDD-1701088, Registered 16 March 2017-Retrospectively registered, http://www.chictr.org.cn/showproj.aspx?proj=1847
