94 research outputs found

    Antioxidant and Anticancer Activities of Wampee (Clausena lansium (Lour.) Skeels) Peel

    Get PDF
    Antioxidant activities of wampee peel extracts using five different solvents (ethanol, hexane, ethyl acetate, butanol and water) were determined by using in-vitro antioxidant models including total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, reducing power, and superoxide scavenging activity. Ethyl acetate fraction (EAF) exhibited the highest antioxidant activity compared to other fractions, even higher than synthetic antioxidant butylated hydroxyl toluene (BHT). In addition, the EAF exhibited strong anticancer activities against human gastric carcinoma (SGC-7901), human hepatocellular liver carcinoma (HepG-2) and human lung adenocarcinoma (A-549) cancer cell lines, higher than cisplatin, a conventional anticancer drug. The total phenolic content of wampee fraction was positively correlated with the antioxidant activity. This is the first report on the antioxidant and anticancer activities of the wampee peel extract. Thus, wampee peel can be used potentially as a readily accessible source of natural antioxidants and a possible pharmaceutical supplement

    Integration of the Vegetation Phenology Module Improves Ecohydrological Simulation by the SWAT-Carbon Model

    Get PDF
    Vegetation phenology and hydrological cycles are closely interacted from leaf and species levels to watershed and global scales. As one of the most sensitive biological indicators of climate change, plant phenology is essential to be simulated accurately in hydrological models. Despite the Soil and Water Assessment Tool (SWAT) has been widely used for estimating hydrological cycles, its lack of integration with the phenology module has led to substantial uncertainties. In this study, we developed a process-based vegetation phenology module and coupled it with the SWAT-Carbon model to investigate the effects of vegetation dynamics on runoff in the upper reaches of Jinsha River watershed in China. The modified SWAT-Carbon model showed reasonable performance in phenology simulation, with root mean square error (RMSE) of 9.89 days for the start-of-season (SOS) and 7.51 days for the end-of-season (EOS). Simulations of both vegetation dynamics and runoff were also substantially improved compared to the original model. Specifically, the simulation of leaf area index significantly improved with the coefficient of determination (R2) increased by 0.62, the Nash–Sutcliffe efficiency (NSE) increased by 2.45, and the absolute percent bias (PBIAS) decreased by 69.0 % on average. Additionally, daily runoff simulation also showed notably improvement, particularly noticeable in June and October, with R2 rising by 0.22 and NSE rising by 0.43 on average. Our findings highlight the importance of integrating vegetation phenology into hydrological models to enhance modeling performance

    A clinical Pseudomonas juntendi strain with blaIMP−1 carried by an integrative and conjugative element in China

    Get PDF
    ObjectiveTo precisely determine the species of a carbapenem-resistant Pseudomonas strain 1809276 isolated from the urine of a Chinese patient and analyze its integrative and conjugative element (ICE) 1276 formation mechanism.MethodsSingle-molecule real-time (SMRT) sequencing was carried out on strain 18091276 to obtain the complete chromosome and plasmid (pCN1276) sequences, and average nucleotide identity (ANI) was used for precise species identification. The ICEs in GenBank with the same integrase structure as ICE 1276 were aligned. At the same time, the transfer ability of blaIMP−1 and the antibiotic sensitivity of Pseudomonas juntendi 18091276 were tested.ResultsThis bacterium was P. juntendi, and its drug resistance mechanism is the capture of the accA4' gene cassette by the Tn402-like type 1 integron (IntI1-blaIMP−1) to form In1886 before its capture by the ΔTn4662a-carrying ICE 1276. The acquisition of blaIMP−1 confers carbapenem resistance to P. juntendi 18091276.ConclusionThe formation of blaIMP−1-carrying ICE 1276, its further integration into the chromosomes, and transposition and recombination of other elements promote bacterial gene accumulation and transmission

    Is Asthma Related to Choroidal Neovascularization?

    Get PDF
    BACKGROUND: Age-related degeneration (AMD) and asthma are both diseases that are related to the activation of the complement system. The association between AMD and asthma has been debated in previous studies. The authors investigated the relationship between AMD and asthma systemically. PRINCIPAL FINDINGS: The epidemiological study showed that asthma was related to choroidal neovascularization (CNV) subtype (OR = 1.721, P = 0.023). However, the meta-analysis showed there was no association between AMD and asthma. In an animal model, we found more fluoresce in leakage of CNV lesions by FA analysis and more angiogenesis by histological analysis in rats with asthma. Western blot demonstrated an elevated level of C3α-chain, C3α'-chain and VEGF. After compstatin was intravitreally injected, CNV leakage decreased according to FA analysis, with the level of C3 and VEGF protein decreasing at the same time. SIGNIFICANCE: This study first investigated the relationship between AMD and asthma systematically, and it was found that asthma could be a risk factor for the development of AMD. The study may provide a better understanding of the disease, which may advance the potential for screening asthma patients in clinical practice

    Single-atomic site catalysts for electrochemical nitrogen fixation

    No full text
    Renewable-energy-derived electrochemical nitrogen fixation represents a sustainable way to produce green ammonia (NH3), but the energy efficiency is limited by its sluggish kinetics and complex reaction pathways. Highly active, selective and robust electrocatalysts are strongly needed to promote the efficiency of nitrogen conversion. Here, we provide an overview of the recent progress in understanding the structure–function correlation of single-atomic site catalysts (SASCs) for electrochemical nitrogen fixation, to provide mechanistic insights and guide the future rational design of SASCs. First, we review the fundamental understanding of both N2 and oxynitride reduction on SASCs, with different hydrogenation pathways. Afterwards, we present the recent progress in the development of well-defined SASCs with various metal centres and the influence from local chemical environments, such as the coordination number, first-shell and second-sphere coordination. At last, we listed some perspectives on future study in this emerging research field

    Study on measurement of sound attenuation coefficient in bubble wake by pool

    No full text
    In this paper, bubbles are generated by controlling the air inlet volume of the ceramic tube array with a gas divider valve. Stimulation tests of sound attenuation characteristics of the wake of bubbles in a laboratory pool are performed. A measurement experiment of sound attenuation coefficient was carried out in the case of still water and bubbles with different particle sizes. The signal frequency is 20-200kHz. Through experimental research, it is found that the existence of bubbles makes the sound attenuation coefficient significantly larger. And the attenuation coefficient is related to the frequency of the sound waves and the size of the bubbles. At the same frequency, the larger the bubble size , the larger the attenuation coefficient will be. When the bubble size is constant, the attenuation of the acoustic signal in small bubbles will change greatly below 50kHz. Above 50kHz, the attenuation coefficient changes relatively smoothly and the fluctuation is small. In the case of medium and large bubbles, the fluctuation of the attenuation coefficient becomes larger than that in the small bubbles. Finally, the theoretically calculated sound attenuation coefficient is compared with the experimentally measured results. And the change trends of the two results are basically the same
    corecore