7 research outputs found

    A rare genomic duplication in 2p14 underlies autosomal dominant hearing loss DFNA58

    Get PDF
    Here we define a ~ 200Kb genomic duplication in 2p14 as the genetic signature that segregates with post-lingual progressive sensorineural autosomal dominant hearing loss in 20 affected individuals from the DFNA58 family, first reported in 2009. The duplication includes two entire genes, PLEK and CNRIP1, and the first exon of PPP3R1 (protein-coding), in addition to four uncharacterized long noncoding (lnc) RNA genes and part of a novel protein-coding gene. Quantitative analysis of mRNA expression in blood samples revealed selective overexpression of CNRIP1 and of two lncRNA genes (LOC107985892 and LOC102724389) in all affected members tested, but not in unaffected ones. Qualitative analysis of mRNA expression identified also fusion transcripts involving parts of PPP3R1, CNRIP1 and an intergenic region between PLEK and CNRIP1, in the blood of all carriers of the duplication, but were heterogeneous in nature. By in situ hybridization and immunofluorescence, we showed that Cnrip1, Plek and Ppp3r1 genes are all expressed in the adult mouse cochlea including the spiral ganglion neurons, suggesting changes in expression levels of these genes in the hearing organ could underlie the DFNA58 form of deafness. Our study highlights the value of studying rare genomic events leading to hearing loss such as copy number variations. Further studies will be required to determine which of these genes, either coding proteins or non-coding RNAs, is or are responsible for DFNA58 hearing loss

    Molecular variability in Amerindians: widespread but uneven information

    Full text link

    Structure and stability upon maternal transmission of common and intermediate FMR1 (Fragile X Mental Retardation 1) alleles in a sample of the Brazilian population

    No full text
    In order to investigate the stability of the FMR1 (Fragile X Mental Retardation 1) alleles from the normal population, when maternally inherited, we analyzed 75 mother-to-son transmissions. Sixty-eight alleles fell within the common range with 20-40 CGG repeats, and seven alleles were intermediate, with 41-48 repeats. No change was observed either in the length or in the structure of these repeats upon transmission. Fifty-three alleles were ascertained in different families, and their size distribution was similar to those described for European and European-derived populations, with three peaks of frequency: 66% of the alleles with (CGG)29, (CGG)30 or (CGG)31, 7.5% with (CGG)20, and 5.7% with (CGG)23. Regarding the AGG interspersion pattern, 69.8% had two AGG repeats, 20.8% had one, 5.7% had three and 3.8% had none. The most common patterns were 10+9+9 (30.2%), 9+9+9 (18.9%), 10+9 (7.5%), and 10+9+10 (7.5%). About 70% of the alleles with up to 40 repeats were linked to the DXS548/FRAXAC1 haplotype 7-3, the most commonly reported in normal populations. Four out of five intermediate alleles were in linkage with the two haplotypes most frequently associated to the FMR1 full mutation, 2-1 and 6-4. These four alleles showed long uninterrupted CGG repeats at the 3' end. The 9+9+22, 9+9+23 and 9+9+28 alleles were linked to the haplotype 2-1, and the 9+37 allele, to the haplotype 6-4. The pattern of AGG interspersion of these alleles and the associated haplotypes were in accordance with the two main pathways toward mutation previously proposed
    corecore