271 research outputs found

    Fooled by bursts. A Goal per Minute model for the World Cup

    Full text link
    On the occasion of the last FIFA World Cup in Brazil, The Economist published a plot depicting how many goals have been scored in all World Cup competitions until present, minute by minute. The plot was followed by a naive and poorly grounded qualitative analysis. In the present article we use The Economist dataset to check its conclusions, update previous results from literature and offer a new model. In particular, it will be shown that first and second half game have different scoring rates. In the first half the scoring rate can be considered constant. In the second it increases linearly with time

    Optimal on-off cooperative manoeuvers for long-term satellite cluster flight

    Get PDF
    When a group of satellites is equipped with a particulary simple propul- sion system, e.g. cold-gas thrusters, constraints on the thrust level and total propellant mass renders cluster-keeping extremely challenging. This is even more pronounced in disaggregated space architectures, in which a satellite is formed by clustering a number of heterogenous, free-flying modules. The research described in this paper develops guidance laws aimed at keeping the relative distances between the cluster modules bounded for long mission lifetimes, typically more than a year, while utilizing constant-magnitude low-thrust, with a characteristic on-off profile. A cooperative guidance law capable of cluster establishment and maintenance under realistic environ- mental perturbations is developed. The guidance law is optimized for fuel consumption, subject to relative distance constraints. Some of the solutions found to the optimal guidance problem require only a single maneuver arc to keep the cluster within relatively close distances for an entire year

    Autonomous satellite constellation for enhanced Earth coverage using coupled selection equations

    Get PDF
    This paper presents a novel solution to the problem of autonomous task allocation for a self-organising constellation of small satellites in Earth orbit. The method allows the constellation members to plan manoeuvres to cluster themselves above particular target longitudes on the Earth’s surface. This is enabled through the use of Coupled Selection Equations, which represent a dynamical systems approach to combinatorial optimisation problems, and whose solution tends towards a Boolean matrix which describes pairings of the satellites and targets which solves the relevant assignment problems. Satellite manoeuvres are actuated using a simple control law which incorporates the results of the Coupled Selection Equations. Three demonstrations of the efficacy of the method are given in order of increasing complexity - first with an equal number of satellites and targets, then with a surplus of satellites, including agent failure events, and finally with a constellation of two different satellite types. The method is shown to provide efficient solutions, whilst being computationally non-intensive, quick to converge and robust to satellite failures. Proposals to extend the method for on-board processing on a distributed architecture are discussed

    Self-organising satellite constellation in geostationary Earth orbit

    Get PDF
    This paper presents a novel solution to the problem of autonomous task allocation for a self-organizing satellite constellation in Earth orbit. The method allows satellites to cluster themselves above targets on the Earth’s surface. This is achieved using Coupled Selection Equations (CSE) - a dynamical systems approach to combinatorial optimization whose solution tends asymptotically towards a Boolean matrix describing the pairings of satellites and targets which solves the relevant assignment problems. Satellite manoeuvers are actuated by an Artificial Potential Field method which incorporates the CSE output. Three demonstrations of the method’s efficacy are given - first with equal numbers of satellites and targets, then with a satellite surplus, including agent failures, and finally with a fractionated constellation. Finally, a large constellation of 100 satellites is simulated to demonstrate the utility of the method in future swarm mission scenarios. The method provides efficient solutions with quick convergence, is robust to satellite failures, and hence appears suitable for distributed, on-board autonomy

    Integration of conventional and unconventional Instrument Transformers in Smart Grids

    Get PDF
    In this thesis the reader will be guided towards the role of Instrument Transformers inside the always evolving Smart Grid scenario. In particular, even non-experts or non-metrologists will have the chance to follow the main concepts presented; this, because the basic principles are always presented before moving to in-deep discussions. The chapter including the results of the work is preceded by three introductive chapters. These, contain the basic principles and the state of the art necessary to provide the reader the tools to approach the results chapter. The first three chapters describe: Instrument Transformers, Standards, and Metrology. In the first chapter, the studied Instrument Transformers are described and compared with particular attention to their accuracy parameters. In the second chapter instead, two fundamental international documents, concerning Instrument Transformers, are analysed: the IEC 61869 series and the EN 50160. This has been done to be completely aware of how transformers are standardized and regulated. Finally, the last introductive chapter presents one of the pillars of this work: metrology and the role of uncertainty. In the core of the work Instrument Transformers integration in Smart Grid is distinguished in two main topics. The first assesses the transformers behaviour, in terms of accuracy, when their normal operation is affected by external quantities. The second exploits the current and voltage measurements obtained from the transformers to develop new algorithm and techniques to face typical and new issue affecting Smart Grids. In the overall, this thesis has a bifold aim. On one hand it provides a quite-detailed overview on Instrument Transformers technology and state of the art. On the other hand, it describes issues and novelties concerning the use of the transformers among Smart Grids, focusing on the role of uncertainty when their measurements are used for common and critical applications

    Smart characterization of rogowski coils by using a synthetized signal

    Get PDF
    With the spread of new Low-Power Instrument Transformers (LPITs), it is fundamental to provide models and characterization procedures to estimate and even predict the LPITs\u2019 behavior. In fact, distribution system operators and designers of network models are looking for all forms of information which may help the management and the control of power networks. For this purpose, the paper wants to contribute to the scientific community presenting a smart characterization procedure which easily provides sufficient information to predict the output signal of a Low-Power Current Transformer (LPCT), the Rogowski coil. The presented procedure is based on a synthetized signal applied to the Rogowski coil. Afterwards, the validity of the procedure is assessed within the Matlab environment and then by applying it on three off-the-shelf Rogowski coils. Simulations and experimental tests and results involving a variety of distorted signals in the power quality frequency range and by adopting a quite simple measurement setup demonstrated the effectiveness and the capability of the procedure to correctly estimate the output of the tested device
    corecore