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Self-organizing Satellite Constellation in

Geostationary Earth Orbit

Garrie S. Mushet, Giorgio Mingotti, Camilla Colombo, and Colin R. McInnes

Abstract

This paper presents a novel solution to the problem of autonomous task allocation for a self-organizing satellite

constellation in Earth orbit. The method allows satellites to cluster themselves above targets on the Earth’s surface. This

is achieved using Coupled Selection Equations (CSE) - a dynamical systems approach to combinatorial optimization

whose solution tends asymptotically towards a Boolean matrix describing the pairings of satellites and targets which

solves the relevant assignment problems. Satellite maneuvers are actuated by an Artificial Potential Field method which

incorporates the CSE output. Three demonstrations of the method’s efficacy are given - first with equal numbers of

satellites and targets, then with a satellite surplus, including agent failures, and finally with a fractionated constellation.

Finally, a large constellation of 100 satellites is simulated to demonstrate the utility of the method in future swarm

mission scenarios. The method provides efficient solutions with quick convergence, is robust to satellite failures, and

hence appears suitable for distributed, on-board autonomy.

I. INTRODUCTION

Recent developments in low-cost spacecraft technologies, and in miniaturization and mass-production, are widen-

ing access to space, and are predicted to give rise to future deployments of large satellite constellations. Such

constellations offer a number of advantages over single-satellite platforms, including higher temporal resolution,

reduced costs and greater coverage, all of which are useful in applications such as Earth observation, space science,

and telecommunications.

Additionally, multi-satellite missions based on low-cost technologies offer increased system reliability and robust-

ness, as individual units can be easily replaced in the event of failure, and the longetivity and operational efficacy

of any given satellite in the constellation is not critical to the success of the mission.

Traditional satellite constellations have been designed to minimise the number of satellites necessary to meet

the coverage requirements of the mission [1], [2]. Existing constellations and those under development, including
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Globalstar, Iridium, etc [3]–[5] , are designed such that the satellites have a fixed relative position, with the propellent

budget sized to account only for small, infrequent station-keeping manoeuvres to correct any deviations from those

fixed relative positions. This is because the cost of performing significant manoeuvres can be prohibitively high.

As a result, much of the literature on autonomous constellation control focuses on station-keeping, and maintaining

constant relative positions between constellation members [6]–[11].

However, low-cost spacecraft technologies, including high specific impulse low-thrust propulsion systems, remove

the restrictions of traditional constellations, and so the notion of massively distributed constellations of small satellites

with the capability of reconfiguring to service real-time changes in coverage demand can be envisioned [12]–[15].

This would enable dynamic coverage of specific regions of the Earth’s surface. For example, a constellation of

telecommunications satellites could respond to localized peaks in demand, which may be transient and unplanned,

or may correspond to specific pre-planned events, for example the Olympics, or other large-scale events. Although

the lifetime of any individual agent may be short in comparison to existing satellites, this would not affect the

reliability of the constellation as a whole, and the constellation could be replenished when necessary.

However, traditional ground-based approaches for control and station-keeping for such large numbers of distributed

spacecraft with reconfigurability would prove prohibitively complex and expensive. For lower operational costs and

increased system flexibility, on-board autonomy is preferred.

Due to the complex nature of the tasks that must be performed by such autonomous constellations, it would be

difficult to build autonomy into the system by using, for example, a look-up table of all possible eventualities for

task allocation while optimization can be computationally expensive for resource limited small satellites. Instead,

it is desirable to follow the example of emergent systems, by implementing behavioural rules which coalesce to

produce the desired complex behaviours.

The desired behaviours of an autonomous constellation are many, and include target detection, reconfiguration

and manoeuvring, networking, collision avoidance and failure detection. However, one of the first that must be

considered is that of task allocation - i.e. in a constellation of many agents, how can it be decided which agents

are assigned to which tasks? As the number of agents and tasks increases, the number of possible task assignment

combinations grows in a combinatorial explosion, making it difficult for an optimal assignment to be found using

standard combinatorial optimization processes.

Previous work on task allocation in other multi-agent systems, including unmanned aerial vehicles [16], [17],

mobile robots [18], [19], computer systems [20] and wireless sensor networks [21], has focused on developing

algorithmic solutions to the relevant assignment problems. Although many of these are effective in the particular

scenarios for which they were designed, it can be difficult to validate their performance and behaviour across a

wide range of scenarios. In this paper, so-called Coupled Selection Equations (CSEs) are used - these represent

a dynamical systems approach to the task allocation problem, and their convergence properties can be validated

through simple analysis of the differential equations which govern them. This also allows the Coupled Selection

differential equations to be embedded within the state space representation of the multi-agent system, providing

an elegant link between individual agent dynamics, and the constellation’s task assignment operations. They also
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offer the possibility of elegantly dealing with the extension of conventional swarming concepts to those in which

the swarm members have different capabilities and/or equipment. This is particularly useful in the domain of

micro-spacecraft, where spacecraft subsystems can be fractionated across multiple agents.

CSEs have been successfully implemented in a variety of multi-agent scenarios, including those involving

assigning game strategies to mobile robots playing soccer [22], developing self-organizing space colonies [23],

assigning subtasks to robots in the assembly of space station components [24], and autonomising manufacturing

processes performed by mobile robots [25], [26]. However, the implementation and the analysis of the method in

a highly reconfigurable satellite constellation has not been previously investigated.

Hence, this paper presents a novel dynamical systems approach to the problem of task allocation in a satellite

constellation for re-allocating satellite resources to match demand on the Earth’s surface. A single ring of satellites

at geostationary earth orbit (GEO) is considered for ease of illustration. The method implements CSEs to solve

the linear two-index and axial three-index assignment problems. These represent the problems of assigning tasks to

agents from a homogenous constellation of satellites, and from a fractionated constellation containing two different

satellite types, respectively. A fractionated constellation could represent one in which the tasks related to payload,

power and other subsystems are disaggregated across various satellites. The solutions delivered by the Coupled

Selection Equations represent near-optimal pairings of satellites to targets on the Earth’s surface, with the manoeuvres

being actuated by a simple artificial potential function.

The remainder of the paper is organized as follows. The next section introduces the constellation model - a single

circular ring of n spacecraft at GEO. The task allocation problem is then introduced. Coupled Selection Equations

are then proposed as a solution to the task allocation problem. The results of the Coupled Selection Equations

for three simple demonstration cases of the method are then given, followed by the manoeuvring strategy for the

satellites. The method is then applied to a large constellation of 100 satellites to show the efficacy of the method

in future swarm mission scenarios. Finally, extensions of the method are discussed and conclusions are made.

II. CONSTELLATION MODEL

The constellation is modelled as a ring of n satellite members, initially at geostationary altitude, and azimuthally

equispaced, as described by (1).

rj0 = rGEO

θj0 =
2π(i− 1)

n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(j = 1, · · · , n) (1)

where rj0 and θj0 are the initial orbit radius and true anomaly of the jth satellite, n is the number of satellites on

the constellation, and rGEO is the orbit radius for GEO, equal to 42, 164.1 km.

The orbit of each satellite can be propagated according to the Gaussian form of the variation of Keplerian elements

given in (2) [27].
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where a is the semi-major axis, e is the eccentricity, i is the inclination, ω is the argument of perigee, Ω is the

right ascension of the ascending node, M is the mean anomaly, v is the orbital speed, theta is the true anomaly,

r is the orbit radius, h is the specific angular momentum, b is the semi-minor axis, p is the semi-parameter, mu is

the standard gravitational parameter or earth, and at, an and ah are the spacecraft accelerations in the directions

tangential and normal to the velocity vector, and in the out-of-place direction, respectively.

It is now assumed that the spacecraft have the ability to thrust in the tangential direction, that the satellite orbits

remain quasi-circular, so that ė ≈ 0, a ≈ r and Ṁ ≈ θ̇ throughout the manoeuvres, and that there will be no

out-of-plane motion, so i̇ ≈ 0.

Applying these assumptions, the equations of motion simplify to those given in (3), where the j notation is

re-introduced to describe the multiple satellite system, and is understood to run from 1 to n.

ṙj = 2

√
r3j
μ
atj

θ̇j =

√
μ

r3j

(3)

It has been previously shown that, for small maneuvers of the type simulated in this work, the eccentricity of a

satellite orbit remains small, hence justifying the assumption that the satellite orbits remain quasi-circular [28].

For numerical propagation a Runge-Kutta method with a relative tolerance of 10−3, absolute tolerance of 10−6

and a maximum step size of 100 s has been employed.

The analytical solution to (3) for constant acceleration can be obtained and was used in the development of the

controller later in Section V, such that

rj(t) =
r0j(

1− atj

√
r0j

μ t
)2

θj(t) = − μ

4atjr0
2
j

((
atj

√
r0j
μ

t− 1

)4

− 1

)
+ θ0j .

(4)
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Two different constellation types are investigated in the test cases of this paper - one in which the constellation

consists of n homogenous satellites, and a fractionated constellation in which the constellation consists of n1

satellites of type 1, and n2 satellites of type 2. In both cases, the initial spacing and dynamics of each satellite are

the same as described above.

III. TASK ALLOCATION PROBLEM

The task allocation problem, in this context, is the problem of deciding which satellites on the constellation

should be assigned to various targets of interest on the Earth’s surface.

In a scenario where the constellation consists of homogenous satellites, the task allocation problem can be

described by the linear two-index assignment problem. When the constellation is fractionated and consists of two

different types of satellite with different capabilities, and one of each satellite type must visit each target, the

problem can be described by the axial three-index assignment problem [29].

A. Linear Two-Index Assignment Problem

The linear two-index assignment problem is to minimise the total costs, c, associated with the pairings between

N = 1, . . . , n targets and satellites, and is stated compactly in (5) - (7).

minimise
Xijk

c =
∑
i,j

CijXij (5)

subject to
∑
i

Xij = 1, ∀j ∈ N (6)

∑
j

Xij = 1, ∀i ∈ N (7)

Here Cij is the cost of pairing target i and satellite j, and Xij is a Boolean variable describing the status of the

pairing, and is defined in (8).

Xij =

⎧⎨
⎩ 1 if satellite j is to visit target i

0 otherwise
(8)

The constraints of (6) - (7) represent the requirement that each target can be visited by only one satellite, and

each satellite can only visit one target, respectively. This implies that X = [Xij ] must be a permutation matrix.

It should be noted that if it is desired for a target to be visited by multiple satellites, that target will simply be

replicated within the cost and Boolean matrices as many times as the number of satellites it requires.

In this paper, the classic two-index assignment problem as described above was transformed to the equivalent

maximization problem, where the winnings, Wij associated with each pairing are to be maximized, and the winnings

are related to the costs through the linear transformation given in (9).

Wij = −γ · Cij + δ, γ > 0, γ, δ ∈ R, ∀(i, j) ∈ N2 (9)
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where γ and δ are arbitrary constants.

This transformation from a problem of minimization of costs to a problem of maximization of winnings is made

due to the nature of Coupled Selection Equations, which are only suitable for solving maximization problems.

B. Axial Three-Index Assignment Problem

The axial three-index assignment problem is an extension to the linear two-index assignment problem. In this

work, it is used to represent the problem of assigning satellites to targets on a fractionated constellation where two

different types of satellites exist, and each target must be visited by a satellite of each type. This could represent a

constellation of disaggregated spacecraft, where payload, power and other subsystems are distributed across separate

agents and each satellite type has a different specialization. If we have N = 1, . . . , n targets, and N = 1, . . . , n of

satellites of types 1 and 2, then the problem is stated compactly in (10) - (13).

minimise
Xijk

c =
∑
i,j,k

CijkXijk (10)

subject to
∑
i

Xijk = 1, ∀(j, k) ∈ N2 (11)

∑
j

Xijk = 1, ∀(i, k) ∈ N2 (12)

∑
k

Xijk = 1, ∀(i, j) ∈ N2 (13)

Then, the Boolean variable is defined according to (14).

Xijk =

⎧⎨
⎩ 1 if satellites j & k are to visit target i

0 otherwise
(14)

Again, the problem is transformed to a maximization problem in this work using the transformation in (9).

IV. COUPLED SELECTION EQUATIONS

A selection equation is defined as a dynamical system in which various modes of the system are set in competition,

and only one mode will survive, whilst all others converge to zero.

In the most basic scenarios, the behaviour may seem trivial, however in more complex situations the coupled

selection equations provide efficient solutions in spite of often complex interactions between the modes.

Because of this behaviour, the method lends itself well to providing solutions for the task allocation problem.

The most basic of these selection equations is given in (15).

ξ̇i = ξi

⎛
⎝1− ξ2i − β

∑
i′ �=i

ξ2i′

⎞
⎠ (15)

October 30, 2013 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. ?, NO. ?, MONTH YEAR 7

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

ξ i

Fig. 1. Typical time evolution of coupled selection equations.

where ξi is the value of the ith coupled selection mode.

It can be shown that the stable equilibrium of (15) corresponds to a situation in which the ξij with the highest

initial value converges to 1, while all others converge to 0, subject to the conditions that ξi(0) ≥ 0, ∀i and β > 1,

where β is a parameter which determines the influence of the modes on each other’s time evolution.

A simple demonstration of the time evolution of this system is shown in Fig. 1 where 5 modes are initialized.

This equation can be extended for use in the linear two-index assignment problem by numbering the variables

with two indices and extending the coupling terms as given by (16).

ξ̇ij = ξij

⎛
⎝1− ξ2ij − β

⎛
⎝∑

i′ �=i

ξ2i′j +
∑
j′ �=j

ξ2ij′

⎞
⎠
⎞
⎠ (16)

where xij is the coupled selection mode describing the status of the pairing between target i and satellite j, and β

is a scaling parameter.

When the matrix of coupled selection variables, Ξ = [ξij ], is initialized with the non-negative winnings from the

linear two-index assignment problem, where each winning from the winnings matrix, W = [Wij ], is transformed

from the corresponding costs, C = [Cij ], using (9), where γ = (maxC)
−1

and δ = 1 and have been set such

that Wi,j ∈ [0, 1], ∀i, j, then it can be shown that in the limit, the coupled selection variables tend asymptotically

towards a permutation matrix which solves the linear two-index assignment problem, X̂. This process is formalized

in (17) [30]. It is also a requirement that β > 1
2 (and, in general β > 1

D where D is the dimension of the coupled

selection variables). The series of transformations are defined by (17).
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C �→ W �→ Ξ(0) → lim
t→∞Ξ(t) = X̂ (17)

In this application, the costs are chosen to be equal to the normalized sum of the angular distance, φij , between

the targets and satellites and the Δv already expended by each satellite, as given by (18).

Cij = κφij + τΔvj , −π ≤ φij < π, κ, τ ∈ R (18)

where φij is the phasing angle between target j and satellite i, Δvj is the cumulative expenditure of Δv for satellite

j, and κ and τ are weighting parameters.

This is to ensure that the selection equations allocate satellites according to their angular distance from targets,

in order to minimize maneuver time, and also that the workload is balanced across the constellation.

It should be noted that, in large constellations, the most appropriate allocations are not necessarily obvious, and

the Coupled Selection Equations provide efficient allocations in these situations.

It should also be noted that while the value of φij is limited to [−π, π], the value of Δvj is limited only by

the maximum fuel load carried by each satellite. Hence, after some time, the Δvj term will come to become more

important in the cost equation, forcing the allocations to be chosen such that the workload across the constellation

is balanced in the long run, as satellite resourced deplete.

One further benefit of the two-index Coupled Selection Equations that makes them appropriate for this application

is that they will still converge to a Boolean matrix if they are modified to represent the case where there is a surplus

of satellites in comparison to targets. In this case, the constraints of (5) - (7) will not be met, but it will still be

the case that each target will be visited by one satellite only, and that the satellites will be assigned in such a way

that (5) will still be minimized.

The coupled selection equation is extended further for use in the axial three-index assignment problem. Again,

another index is added to the variable numbering, and more coupling terms are added as appropriate as given

by (19).

ξ̇ijk = ξijk

⎛
⎝1 + (3β − 1) ξ2ijk − β

⎛
⎝∑

i′
ξ2i′jk +

∑
j′

ξ2ij′k +
∑
k′

ξ2ijk′

⎞
⎠
⎞
⎠ (19)

Equation 19 will converge according to (17) so long as β > 1
3 and ξijk(0) > 0, ∀i, j, k. In this case, each cost

Cijk is set equal to the sum of the angular distances between satellite i and target k and satellite j and target k.

Although the asymptotically stable solutions of Eqs. 15, 16 and 19 correspond to valid solutions, there may be

some unstable equilibria - hence, noise is added to the equations if the time derivatives fall below a set tolerance,

in order to prevent stagnation close to unsuitable unstable equilibria.

Because the equations can be shown to be gradient flows with asymptotically stable equilibria and containing

no more complicated attractors than this, a simple first order forward Euler method integrator is sufficient for

numerically propagating the equations. This has further advantages for implementation on a highly distributed
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constellation of small satellites, as it does not require significant on-board processing from each agent in order for

them to propagate the equations on-orbit [29].

Below, three demonstration cases of the Coupled Selection Equations solving constellation task allocation prob-

lems are given, with each focusing on a different aspect of the coupled selection equations.

A. Demonstration of CSEs for Equal Number of Satellites and Targets

In this demonstration, a constellation of six homogenous satellites are initially equi-spaced on geostationary orbit

with an initial Δv expenditure of 0. Six targets are identified on the Earth’s surface, and the Coupled Selection

Equations are used to deterimine which satellites should be allocated to which targets.

The equations converge quickly, and snapshots of their time evolution are shown in Fig. 2.

(a) (b)

(c) (d)

Fig. 2. Time evolution of coupled selection equation variables - radius of circle represents strength of pairing between target i and satellite j.
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As can be seen from Fig. 2, the equations converge as expected - the pairing with the highest initial strength

in each row/column tends to persist and grow, whilst all others decay to zero. The only exception to this is in

row 1, where the highest initial coupling for target 1 is with satellite 2, yet in the converged state, satellite 1 has

been allocated to target 1. This is because targets 1 and 5 both have their strongest initial couplings associated

with satellite 2. This results in a column-wise competition between the two elements via the coupling terms of the

equation, and since the highest initial value of column 2 lies with target 5, target 5 wins the competition for satellite

2. This demonstrates the subtle way that the method can deal with conflicts that arise between the satellites as they

vie to be allocated to targets. The final on-orbit allocations of this simulation are displayed in Fig. 3.

 

 

GEO
Satellites
Targets

Fig. 3. Satellite allocations for test case #1.

B. Demonstration of CSEs for Surplus Satellites with Satellite Failure

In this demonstration, a constellation of seven homogenous satellites are again initially equi-spaced on geosta-

tionary orbit. Three targets are identified on the Earth’s surface, and the Coupled Selection Equations are again

used to deterimine which satellites should be allocated to which targets. During the process, one of the allocated

satellites fails, and the coupled selection equations autonomously re-converge to allocate one of the unallocated

satellites to the target of the failed satellite. Once again, snapshots of the time evolution of the equations are shown

in Fig. 4.

The highest initial couplings in each row/column persist and all others decay as expected with satellites 1, 4 and

7 being allocated as shown by Fig. 4. At t = 15s, a failure is triggered in satellite 1 and the unallocated satellites
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begin a sub-competition to fill the position of the failed satellite. This sub-competition converges as expected and

satellite 2, which has the strongest coupling with the remaining target compared to the other unallocated satellites,

wins the competition and fills in for failed satellite 1, as shown in Fig. 4.

Fig. 4. Time evolution of coupled selection equation variables - radius of circle represents strength of pairing between target i and satellite j.

To provide more detail on the time evolution of the equations in this scenario, the coupled selection time histories

for the pairings associated with target 3 are shown in Fig. 5.

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

time

ξ i
j

 

 

Satellite 1
Satellite 2
All Others

Fig. 5. Coupled selection equation time histories for target 3 in test case #2.
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Figs. 4 and 5 demonstrate how robust the Coupled Selection Equations are to agent failures, allowing quick

adaptations to be made to the allocations in response to unforeseeable events.

The on-orbit allocations from before and after the failure of satellite 1 are shown in Fig 4.

 

GEO
Satellites
Targets

 

GEO
Satellites
Targets
Failed Satellite

Fig. 6. Satellite allocations for test case #2.

For demonstration, the same simulation was run, but with the initial Δvs of each satellite in the cost function

set such that a previously allocated satellite had a Δv loading greater than that of the other satellites. The resulting

allocations are shown in Fig. 7.

 

 

GEO
Satellites
Targets

Fig. 7. Satellite allocations for test case #2 with differences in initial Δv expenditures, as shown by the bars beside each satellite - a higher

percentage of filled bar indicates higher expenditures.

As can be seen, the satellite with the highest Δv expenditure, which had previously been allocated, has now
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been replaced by a satellite with a lower Δv allocation, despite the fact that the replacement satellite is further

away from the target.

C. Demonstration of CSEs for Multiple Satellite Types

In this demonstration, a constellation of 6 satellites - 3 of type 1 and 3 of type 2 - are initially equi-spaced in

geostationary orbit, in order to represent a disaggregated spacecraft scenario. Three targets are identified on the

Earth’s surface, and the Coupled Selection Equations are used to determine which two satellites of each type are

allocated to which targets. The equations again converge quickly, and snapshots of their time evolution are given

in Fig. 8. Here, the selection variables converge in pairs - i.e. the top (red) layer represents the possible pairs of

satellites of both types that can visit target 1, the green layers represents the same for target 2, etc. Only one variable

in each layer should persist after convergence. The on-orbit allocations from this demonstration case are given in

Fig. 9.

Fig. 8. Time evolutions of coupled selection equation variables - radius of sphere represents strength of pairing between target k and satellite

combinations i and j.
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GEO
Type 1 Sats
Type 2 Sats
Targets

Fig. 9. Satellite allocations for test case #3

V. ARTIFICIAL POTENTIAL FUNCTION ACTUATOR

At each time step, the phase angle between each satellite and target are computed. A weighted average of the

phasing angles using the coupled selection variables is then computed for each satellite according to (20).

φ̄j =

∑N
j=1 ξijφij∑N
j=1 ξij

(20)

In the case where

N∑
j=1

= 0 (i.e. when satellite j has not been allocated to any target), then φ̄j is set to 0.

The use of the weighted average ensures that the satellite maneuvers can be actuated even before the Coupled

Selection Equations have fully converged. Once they have converged, the phasing angle assigned to each satellite

is offset by a small amount to avoid satellite converging on precisely the same space above the target.

The desination direction, ε, can then be calculated from (21). This variable dictates whether the satellite is leading

or lagging its target, with a positive and negative values representing leads and lags respectively.

ε = sign(φ̄j) (21)

At each time-step the analytical solution in (4) is used to estimate the phase angle that the satellite would traverse

if it were to return to geostationary orbit from that point, φGEO. This information, along with the destination direction,

is used to raise the orbit by roffset when the satellite leads the target, in order to slow its angular rate with respect
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to the target, or to lower the orbit by roffset when the satellite lags the target to allow the satellite to advance upon

it, as shown by (22).

rdesired =

⎧⎨
⎩ rGEO − roffsetε |φ̄j | > |φGEO|

rGEO |φ̄j | ≤ |φGEO|
(22)

A a simple artificial potential function controller is designed to actutate the orbit raising/lowering maneuvers,

and is constructed in order to have a minimum value corresponding to the constellation state in which the satellites

are at their target orbit radii, as given in (23).

V =
1

2

N∑
j=1

(rj − rdesired)
2

(23)

Accordingly, the convergence of the system to its state of minimum potential, i.e. where the constellation converges

upon its target orbit radii, can be assured if the rate of change of the potential function is rendered negative definite.

The derivative of (23) is given by (24).

V̇ =
N∑
j=1

ṙj (rj − rdesired) (24)

Substituting (3) into (24) results in (25).

V̇ = 2
N∑
j=1

√
r3j
μ

(rj − rdesired) atj (25)

It is clear from (25) that convergence will be achieved if the control acceleration is assigned according to (26).

atj = −ζsgn (rj − rdesired) (26)

where ζ is a parameter describing the maximum acceleration magnitude available to the satellite.

This controller gives a simple thrust-coast-thrust profile, although where minimum time convergence upon the

target is desired, a simple controller for continuous thrust could be implemented as an alternative [28].

The value of ζ in (26) is set such that the maximum acceleration magnitude requested by the controller does not

exceed the capabilities of the on-board propulsion system. A parameter study was performed in order to understand

the required values of ζ and roffset for different response times of the constellation, the results of which are shown

in in Figs. 10 and 11.
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Fig. 10. Rephasing time with 1000 km radial offset for varying maximum accelerations
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Fig. 11. Rephasing time with 100 km radial offset for varying maximum accelerations

It can be seen that the value of ζ has only a modest effect on the total re-phasing time, with almost no difference

in the case where roffset = 100 km, since most of the rephasing time is spent in the coast arc. Given this, it would
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generally be best to pick as low as value as ζ as possible, as this gives the lowest Δv expenditures, for only

small increases in re-phasing times. The dominating factor with regards to the re-phasing time, then, is the radial

offset. Raising the order of magnitude of roffset will lower the re-phasing time by approximately the same order of

magnitude, but with an impact on the accumulated Δv.

Hence, for this simulation, the maximum available acceleration was set to 0.1 mm/s2, equivalent to a 100 kg

spacecraft with a 10−2 N thruster available, with roffset = 1000 km.

VI. SIMULATION OF N = 100 SATELLITES

A. Demonstration of Success of Target Allocation and Maneuver

In the final demonstration case, 100 satellites were placed in geostationary orbit, initially equally spaced. Four

target scenarios were then simulated, each with varying target positions, numbers of simultaneous targets, numbers

of satellites per target, and durations, as detailed in Table. I.

TABLE I

SIMULATION SCENARIO DETAILS.

Scenario Number Of Targets
Target Longitudes

(deg)

Number Of Satellites

Per Target

Scenario Duration

(days)

1 2 [50,120] [50,50] 20

2 5 [20,180,10,-115,-60] [10,10,30,20,5] 20

3 3 [10,45,-73] [10,10,10] 5

4 4 [20,55,-63,-25] [10,10,10,25] 20

The first scenario is designed to show how the constellation responds when requested to work at full capacity,

i.e. when the number of satellites requested is equal to the number of satellites in the constellation. In this case,

the 100 satellite constellation is required to be split between 2 targets, which may represent a situation in future

telecommunications applications where two locations have an large bandwidth requirement. The second shows

how the constellation deals with a relatively large number of simultaneous targets, with some satellites not being

allocated. The third scenario is short in duration in order to show how the constellation responds when its target base

changes mid-maneuver. In this case, an additional target is added in scenario 4 before the satellites have converged

upon the 3 targets from scenario 3, which will require a re-evaluation of the allocation of satellite resources.

Figure (12) shows the satellite positions at 4 times during scenario one, as all 100 satellites converge upon 2

targets. Figure (13) shows the time histories of the satellite longitudes for scenario one.
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Fig. 12. Positions of satellites during scenario #1. Circular markers on the Earth’s surface represent the positions of targets, with the satellites

colour-coded as squares to represent the allocations of satellites to targets.
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Fig. 13. Satellite longitude time histories during scenario #1, colour coded according to target allocation.

As can be seen from both Figs. (12) and (13), the satellites converge upon the two targets within a period of 14

days, and spread out over the target longitude.

Figure (14) shows the satellite positions at 4 times during scenario two, while Fig. (15) shows the time histories

of the satellite longitudes for scenario two.
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Fig. 14. Positions of satellites during scenario #2. Circular markers on the Earth’s surface represent the positions of targets, with the satellites

colour-coded as squares to represent the allocations of satellites to targets.
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Fig. 15. Satellite longitude time histories during scenario #2, colour coded according to target allocation, with black representing unallocated

satellites.

As can be seen from both Figs. (14) and (15), the satellites deal well with a large number of targets, converging

in just 13 days. Additionally, satellites which are not allocated remain in their previous position.

Figure (16) shows the satellite positions at 3 times during scenario three. Figure (17) shows the time histories

of the satellite longitudes for scenario three, while Figs. (18) and (19) show the same for scenario four.
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Fig. 16. Positions of satellites during scenario #3. Circular markers on the Earth’s surface represent the positions of targets, with the satellites

colour-coded as squares to represent the allocations of satellites to targets.
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Fig. 17. Satellite longitude time histories during scenario #3, colour coded according to target allocation, with black representing unallocated

satellites.

October 30, 2013 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. ?, NO. ?, MONTH YEAR 24

Fig. 18. Positions of satellites during scenario #4. Circular markers on the Earth’s surface represent the positions of targets, with the satellites

colour-coded as squares to represent the allocations of satellites to targets.
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Fig. 19. Satellite longitude time histories during scenario #4, colour coded according to target allocation, with black representing unallocated

satellites.

As can be seen from Figs. (16)-(19), the satellites respond well to changes in the target positions mid-maneuver.

When information about the new target is available, the coupled selection process restarts and the constellation

re-evaluates its allocations. The controller is not destabilized by the sudden change in allocations.

Figure (20) shows the distribution of Δv across the constellation after the 65 day simulation period. It shows an

approximately uniform distribution, meaning that after this period, the workload is being balanced approximately

uniformly across the constellation. As the constellation mission continues, the cost term in (18) associated with Δv

will grow, and thus the constellation will be forced to load balance more completely as satellite resources deplete.

As is seen from the graph, the approximate Δv expenditure for a single rephasing maneuver is in the range [0, 0.07]

km/s.
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Fig. 20. Histogram of Δv expended by constellation over the course of the 4 rephasing maneuvers simulated.

VII. CONCLUSION

This paper has demonstrated a novel solution to the problem of autonomous task allocation on a self-organizing

constellation of small satellites. Coupled Selection Equations have been shown to converge to solutions which solve

the linear two-index assignment problem and axial three-index assignment problem, providing efficient pairings

between satellite members and targets on the Earth’s surface.

Demonstrations of the efficacy of the method have been given with various levels of complexity. Through these

demonstrations, the method is shown to generate these solutions quickly, with very low computational effort, and

is also shown to be robust to satellite failures.

In addition, a simulation with a constellation of 100 satellites has been shown, which demonstrates the applicability

of the method to future swarm mission scenarios. In this simulation, the satellites respond well to the task allocation

process, and take 10-20 days to arrive above their targeted longitudes in their required numbers. This time-frame

is suitable for some applications, for example telecommunications and space science, where the targeted longitudes

may be known in advance. However, this is not potentially quick enough for applications in, for example, disaster

monitoring, which may require a faster response time. It would be possible to increase the maximum available

acceleration for each spacecraft, or increase the offset in orbit radius to incur a faster relative drift, though this

would lead to a reduction in the longevity of individual satellites units, increasing the frequency at which the
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constellation would need to be replenished. For such high accelerations, it would be necessary for the cost of

replenishing the constellation to fall further, or for the propulsion technology to advance to a stage where such

accelerations can be achieved from exploitation of natural orbital perturbations (i.e. solar radiation pressure), or

where propulsion is near-propellantless.

In addition, the work presented here has implemented a model of the Coupled Selection Equations which is

propagated on a centralised architecture. In order for the autonomy to be embedded within the constellation, the

equations must be reformulated to be amenable to computation on a distributed architecture, where each agent

propagates its own state using information from the constellation network. The reformulated equations must be

simple enough for agents with limited processing capabilities to propagate them, and must still converge to a viable

solution in the absence of information about the state of all other members of the constellation or where time delays

in communications are present. This work provides a strong basis for these future developements for embedded

autonomy.
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