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AUTONOMOUS SATELLITE CONSTELLATION FOR ENHANCED
EARTH COVERAGE USING COUPLED SELECTION EQUATIONS

Garrie S. Mushet∗, Giorgio Mingotti†, Camilla Colombo‡, and Colin R. McInnes§

This paper presents a novel solution to the problem of autonomous task allocation
for a self-organising constellation of small satellites in Earth orbit. The method
allows the constellation members to plan manoeuvres to cluster themselves above
particular target longitudes on the Earth’s surface. This is enabled through the use
of Coupled Selection Equations, which represent a dynamical systems approach to
combinatorial optimisation problems, and whose solution tends towards a Boolean
matrix which describes pairings of the satellites and targets which solves the rele-
vant assignment problems. Satellite manoeuvres are actuated using a simple con-
trol law which incorporates the results of the Coupled Selection Equations. Three
demonstrations of the efficacy of the method are given in order of increasing com-
plexity - first with an equal number of satellites and targets, then with a surplus
of satellites, including agent failure events, and finally with a constellation of two
different satellite types. The method is shown to provide efficient solutions, whilst
being computationally non-intensive, quick to converge and robust to satellite fail-
ures. Proposals to extend the method for on-board processing on a distributed
architecture are discussed.

INTRODUCTION

Satellite constellations offer a number of advantages over single-satellite platforms in a variety
of space applications. Some missions require multiple satellites by their very nature - with GPS, for
example, contact with at least 4 satellites is required from a given position on the Earth’s surface
to obtain reliable positioning information, and many more satellites are required to extend GPS
capabilities for continuous global coverage.1

Moreover, there is an increasing trend towards implementing constellations in mission applica-
tions which were traditionally performed with single-satellite platforms, such as Earth observation,
space science and telecommunications, for example the Disaster Monitoring Constellation (DMC).2

This is due to the reduced costs and greater coverage associated with the use of a large number of
smaller satellites, which are becoming increasingly viable for implementation as advances in minia-
turisation and mass production continue. Additionally, multi-satellite missions increase system re-
liability and robustness, as the failure or success of a constellation mission is not dependent on the
longevity and operational efficacy of a single satellite.
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Traditionally, constellation design is driven by the minimisation of the number of satellites to
meet the coverage requirements of the mission. Existing constellations, and those proposed for
implementation in the near future involve multiple satellites with a fixed relative position, includ-
ing Teledesic, Iridium, etc.3 The propellent budget is defined to allow only small station-keeping
manoeuvres during the mission, as any other manoeuvring can be expensive for these relatively
large spacecraft. As such, much previous work on autonomous constellation control has centred on
station-keeping and maintaining a constant relative position between satellites.3, 4, 5

However, as minituarised spacecraft technology advances, including high specific-impulse low-
thrust propulsion systems, the notion of massively distributed constellations of small satellites with
the ability to reconfigure to service real-time changes in coverage demand can be envisioned.6, 7, 8, 9

This would enable enhanced coverage of specific regions of the Earth’s surface. For example, a
constellation of telecommunications satellites could respond to localised peaks in demand, which
may be transient and unplanned, or may correspond to specific pre-planned events, for example the
Olympics, World Cup, or other large-scale events.

Traditional ground-based approaches for control and station-keeping for such large numbers of
distributed spacecraft with high reconfigurability would prove prohibitively complex and expensive.
For lower operational costs and increased system flexibility, on-board autonomy is preferred.

Due to the complex nature of the tasks that must be performed by autonomous constellations,
it would be difficult to build autonomy into the system by considering every possible outcome
comprehensively, and embedding aspects of autonomy to deal with each eventually. Instead, it is
desirable to follow the example of nature’s emergent systems, by implementing simple behavioural
rules which coalesce to produce the desired complex behaviours.

The desired behaviours of an autonomous constellation are vast, and include such things as target
detection, reconfiguration and manoeuvring, networking, collision avoidance, failure detection, and
a whole host of other tasks. However, one of the first that must be considered is that of task allocation
- i.e. in a constellation of many agents, how is it decided which agents are assigned to which tasks?
As the number of agents and tasks increases, the number of possible task assignment combinations
grows in a combinatorial explosion, making it impossible for an optimal assignment to be found
using standard combinatorial optimisation processes.

Hence, this paper presents a novel dynamical systems approach to the problem of task alloca-
tion in a micro-satellite constellation in Earth-centered orbits for re-allocating satellite resources to
match demand on the Earth’s surface. A single ring of satellites at GEO is considered for illustra-
tion. The method implements Coupled Selection Equations to solve the linear two-index and axial
three-index assignment problems. These represent the problems of assigning tasks to agents from
a homogenous constellation of satellites, and from a constellation containing two different satellite
types, respectively.

The remainder of the paper is organised as follows. The next section introduces the constellation
model - a single circular ring of n spacecraft on GEO. The task allocation problem is then intro-
duced. Coupled Selection Equations are then introduced as a solution to the task allocation problem.
Then the manoeuvring strategy for the satellites is given. The results from three demonstration cases
of the method are then given. Finally, extensions of the method are discussed and conclusions are
made.
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CONSTELLATION MODEL

Dynamics

The constellation is modelled as a ring of n satellite members, initially at geostationary altitude,
and azimuthally equispaced, as described by Eqs. (1),

ri0 = rGEO

θi0 =
2π(i− 1)

n

 (i = 1, · · · , n) (1)

Where rGEO is the radius of Geostationary Earth Orbit, 42, 164.1 km, and θi is the true anomaly
of the ith satellite.

The trajectory of each satellite is propagated according to the Gaussian form of the variation of
Keplerian elements given in Eq. (2).10
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Where a, e, i, ω, Ω, and M are the standard Keplerian elements of semi-major axis, eccentricity,
inclination, argument of perigee, right ascension of the ascending node and mean anomaly respec-
tively. In addition, v is the orbital speed, r is the orbital radius, θ is the true anomaly, u is the
argument of latitude, p is the semi-parameter, b is the semi-minor axis, h is the specific angular
momentum, µ is the standard gravitational parameter of Earth and at, an and ah are the control
accelerations in the directions tangential, normal and out-of-plane to the satellite velocity vector
respectively.

It is assumed that the spacecraft only have the ability to thrust in the tangential direction, that
the satellite orbits remain quasi-circular throughout the manoeuvres, and that there will be no out-
of-plane motion. Applying these assumptions, the equations of motion simplify to those given
in Eq. (3), where the i notation is re-introduced to describe the multiple satellite system, and is
understood to run from 1 to n.
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ṙi = 2

√
r3i
µ
ati

θ̇i =

√
µ

r3i

(3)

For numerical propagation a Runge-Kutta method with relative tolerance of 10−3 and absolute
tolerance of 10−6 has been employed.

Two different constellation types are investigated in this paper - one in which the constellation
consists of n homogenous satellites, and one in which the constellation consists of n1 satellites of
type 1, and n2 satellites of type 2. In both cases, the initial spacing and dynamics of each satellite
are the same as described above.

THE TASK ALLOCATION PROBLEM

The task allocation problem, in this context, is the problem of deciding which satellites on the
constellation should be assigned to the the various targets which arise on the Earth’s surface.

In a scenario where the constellation consists of homogenous satellites, the task allocation prob-
lem can be described by the linear two-index assignment problem. When the constellation consists
of two different types of satellite with different capabilities, and one of each satellite type must visit
each target, the problem can be described by the axial three-index assignment problem.15

Linear Two-Index Assignment Problem The linear two-index assignment problem is to minimise
the total costs, c, associated with the pairings between N = 1, . . . , n targets and satellites, and is
stated mathematically in Eqs. (4) - (6).

minimise
Xij

c =
∑
i,j

CijXij (4)

subject to
∑
i

Xij = 1, ∀j ∈ N (5)∑
j

Xij = 1, ∀i ∈ N (6)

Here, Cij is the cost associated with pairing satellite j to target i, and Xij is a Boolean variable
describing status of the pairing according to Eq. (7).

Xij =

{
1 if target i is to be visited by satellite j
0 otherwise

(7)

The constraints of Eq. (5) - (6) represent the requirement that each target can be visited by only
one satellite, and each satellite can only visit one target, respectively. This implies that X = [Xij ]
must be a permutation matrix. It should be noted that if it is desired for a target to be visited by
multiple satellites, that target should simply be replicated within the cost and Boolean matrices as
many times as the number of satellites it requires.
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In this work, the classic two-index assignment problem as described above was transformed to
the equivalent maximisation problem, where the winnings, Wij , associated with each pairing are to
be maximised, and the winnings are related to the costs through the linear transformation given in
Eq. (8).

Wij = −γ · Cij + δ, γ > 0, γ, δ ∈ R, ∀(i, j) ∈ N2. (8)

Axial Three-Index Assignment Problem The axial three-index assignment problem is an exten-
sion to the linear two-index assignment problem. In this work, it is used to represent the problem
of assigning satellites to targets on a constellation where two different types of satellites exist, and
each target must be visited by a satellite of each type. This could represent a constellation of dis-
aggregated spacecraft, where payload, power supply and other subsystems are distributed across
separate agents - each satellite type has a different specialisation. If we have N = 1, . . . , n targets,
and N = 1, . . . , n of satellites of types 1 and 2, then the problem is stated is stated mathematically
in Eqs. (9) - (12).

minimise
Xijk

c =
∑
i,j,k

CijkXijk (9)

subject to
∑
i

Xijk = 1, ∀(j, k) ∈ N2 (10)∑
j

Xijk = 1, ∀(i, k) ∈ N2 (11)

∑
k

Xijk = 1, ∀(i, j) ∈ N2 (12)

Then, the Boolean variable is defined according to Eq. (13).

Xijk =

{
1 if target i is to be visited by the combination of satellites j and k
0 otherwise

(13)

Again, the problem is transformed to a maximisation problem in this work using the transforma-
tion in Eq. (8).

Coupled Selection Equations

A selection equation is defined as a dynamical system in which various modes of the system are
set in competition, and only the mode with the highest initial value will survive, whilst all others
converge to zero in the limit as time tends towards infinity.

Because of this behaviour, the method lends itself well to providing solutions for the task al-
location problem, and has been successfully implemented in a variety of contexts involving task
allocation for autonomous agents. This includes assigning game strategies to mobile robots playing
football, developing self-organising space colonies, and assigning subtasks to robots in the assembly
of space station components.11, 12, 13

The most basic of these selection equations is given in Eq. (14).
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dξi
dt

= ξi

1− ξ2i − β
∑
i′ 6=i

ξ2i′

 (14)
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Figure 1: Typical Time Evolution of Coupled Selection Equations

It can be shown that the stable equilibrium of Eq. (14) corresponds to a situation in which the ξij
with the highest initial value converges to 1, while all others converge to 0, subject to the conditions
that ξi(0) ≥ 0, ∀i and β > 1, where β is a parameter which determines the influence of the modes
on each other’s time evolution.

A simple demonstration of the time evolution of this system is shown in Figure 1 where 5 modes
are initialised.

This equation can be extended for use in the linear two-index assignment problem by numbering
the variables with two indices and extending the coupling terms as given by Eq. (15).

dξij
dt

= ξij

1− ξ2ij − β

∑
i′ 6=i

ξ2i′j +
∑
j′ 6=j

ξ2ij′

 (15)

When the matrix of coupled selection variables, Ξ = [ξij ], is initialised with the non-negative
winnings from the linear two-index assignment problem, where each winning, Wij , is transformed
from the corresponding cost, Cij , using Eq. (8), where γ = (max C)−1 and δ = 1 and have been
set such that Wi,j ∈ [0, 1], ∀i, j, then it can be shown that in the limit as time tends to infinity,
the coupled selection variables tend towards a permutation matrix which solves the linear two-index
assignment problem, X̂. This process is formalised in Eq. (16).14 It is also a requirement that β > 1

2
(and, in general β > 1

D where D is the dimension of the coupled selection variables).

C 7→W 7→ Ξ(0)→ lim
t→∞

Ξ(t) = X̂ (16)

In this application, the costs are chosen to be equal to the angular distance between the targets
and satellites, as given by Eq. (17).
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Cij = φij = θi − θj , −π ≤ φij < π (17)

One further aspect of the two-index coupled selection equations that makes them appropriate for
this application is that they will still converge to a Boolean matrix if they are modified to represent
the case where there are a surplus of satellites in comparison to targets. In this case, the constraints
of Eq. (4) - (6) will not be met, but it will still be the case that each target will be visited by one
target only, and that the satellites will be assigned in such a way that Eq. (4) will still be minimised.

The coupled selection equation is extended further for use in the axial three-index assignment
problem. Again, another index is added to the variable numbering, and more coupling terms are
added as appropriate as given by Eq. (18).

ξ̇ijk = ξijk

1 + (3β − 1) ξ2ijk − β

∑
i′

ξ2i′jk +
∑
j′

ξ2ij′k +
∑
k′

ξ2ijk′

 (18)

Equation (18) will converge according to Eq. (16) so long as β > 1
3 and ξijk(0) > 0,∀i, j, k.

In this case, each cost Cijk is set equal to the sum of the angular distances between satellite i and
target k and satellite j and target k.

Although the asymptotically stable solutions of Eqs. (14), (15) and (18) correspond to valid solu-
tions, there may be some unstable equilibria - hence, noise is added to the equations if the maximum
rate of change of the equations fall below a set tolerance, in order to prevent stagnation at unsuitable
unstable equilibria.

Because the equations can be shown to be gradient flows with asymptotically stable equilibria
and containing no more complicated attractors than this, a simple first order forward Euler method
integrator is sufficient for numerically propagating the equations. This has further advantages for
implementation on a highly distributed architecture of small satellites, as it does not require signifi-
cant on-board processing from each agent in order for them to propagate the equations on-orbit.15

Manoeuvre Actuation

Once the Coupled Selection Equations have converged, a simple transformation of the converged
matrix can be used to define the destination direction, d, for each satellite. For the two-index
assignment problem, this is defined according to Eq. (19).

d(φij ,Ξ) = Nλσ

(∑
i

ξijNλ′σ′ (φij)

)
(19)

Equation (19) is a normal linear combination of the phasing angles between satellite j and all
targets i, weighted with the coupled selection variables. This results in the property that the d
tends towards the direction of the allocated target - i.e. it is a negative number if the satellite leads
the target, and positive if the satellite lags the target. The operator Nγδ(y) = 1

|y|+1/(λ|y|+σ) for
λ, σ > 0, and is used to normalise the value of y and avoid singularities at y = 0.

Once the direction of rephasing is set, a simple controller can be designed to raise the satellite
orbits in order to allow a lagging target to advance towards the satellite or raise them to allow
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a lagging target to advance towards the satellite. The controller implemented here is given by
Eqs. (20) and (21).

rdesired =


rGEO − 1000 km d < 0
rGEO + 1000 km d > 0

rGEO otherwise
(20)

at =


κ r − rdesired < rdb
−κ r − rdesired > rdb
0 otherwise

(21)

Here rdb is the dead-band for the satellite radius with a value of 1 km, and κ is a nominal value of
the tangential thrust acceleration set according to the capabilities of the on-board propulsion system.

This controller gives a simple thrust-coast-thrust profile, although where minimum time conver-
gence upon the target is desired, a simple controller for continuous thrust can be implemented.16

NUMERICAL RESULTS

To demonstrate the efficacy of this method in solving the task allocation problem, three demon-
stration cases are introduced below, and the results from their numerical simulations are given.

(a) t = 0 s (b) t = 1 s

(c) t = 3 s (d) t = 5 s

Figure 2: Time Evolution of Coupled Selection Equation Strengths - Radius of Circle Repre-
sents Strength of Pairing Between Target i and Satellite j.
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Test Case #1: Equal Number of Satellites and Targets

In this demonstration, a constellation of six homogenous satellites are initially equi-spaced on
geostationary orbit. Six targets are identified on the Earth’s surface, and the Coupled Selection
Equations are used to deterimine which satellites should be allocated to which targets.

The equations converge quickly, and snapshots of their time evolution are shown in Figure 2.

As can be seen from Figure 2, the equations generally converge as expected - the pairing with the
highest initial strength in each row/column tends to persist and grow, whilst all others decay to zero.
The only exception to this is in row 1, where the highest initial coupling for target 1 is with satellite
2, yet in the converged state, satellite 1 has been allocated to target 1. This is because targets 1 and 5
both have their strongest initial couplings associated with satellite 2. This results in a column-wise
competition between the two elements via the coupling terms of the equation, and since the highest
initial value of column 2 lies with target 5, target 5 wins the competition for satellite 2.

Figure 3: Satellite Allocations for Test Case #1

The final on-orbit allocations of this simulation are displayed in Figure 3. The manoeuvre results
are shown in Figure 4 - where Figure 4a displays the time histories of the longitudes of the satellites,
and Figure 4b shows the final on-orbit positions of the satellites with respect to the targets.
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Figure 4: Manoeuvre Test Case #1

Test Case #2: Surplus Satellites with Satellite Failure

(a) t = 0 s (b) t = 15 s

(c) t = 25 s (d) t = 45 s

Figure 5: Time Evolution of Coupled Selection Equation Strengths - Radius of Circle Repre-
sents Strength of Pairing Between Target i and Satellite Combinations j.

In this demonstration, a constellation of seven homogenous satellites are initially equi-spaced on
geostationary orbit. Three targets are identified on the Earth’s surface, and the Coupled Selection
Equations are again used to deterimine which satellites should be allocated to which targets. During
the process, one of the allocated satellites fails, and the coupled selection equations re-converge to
allocate one of the unallocated satellites to the target of the failed satellite. Once again, snapshots
of the time evolution of the equations are shown in Figure 5.
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The highest initial couplings in each row/column persist and all others decay as expected with
satellites 1, 4 and 7 being allocated as shown by Figures 5a-5b. At t = 15s, a failure is triggered
in satellite 1 and the unallocated satellites begin a sub-competition to fill the position of the failed
satellite. This sub-competition converges as expected and satellite 2, which has the strongest cou-
pling with the remaining target compared to the other unallocated satellites, wins the competition
and fills in for failed satellite 1, as shown in Figures 5c-5d.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

time (s)

ξ ij

 

 

Satellite 1

Satellite 2

All Others

Figure 6: Coupled Selection Equation Time Histories for Target 3 Test Case #2

To provide more detail on the time evolution of the equations in this scenario, the coupled selec-
tion time histories for the pairings associated with target 3 are shown in Figure 6.

Figures 5 and 6 demonstrate how robust the coupled selection equations are to agent failures,
allowing quick adaptations to be made to the allocations in response to unforeseeable events.

The on-orbit allocations from before and after the failure of satellite 1 are shown in Figures 7a
and 7b respectively. Manoeuvre results are again shown in Figure 8 - where Figure 8a displays the
time histories of the longitudes of the satellites, and Figure 8b shows the final on-orbit positions of
the satellites with respect to the targets.
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(a) t = 15 s Before Satellite 1 Failure

(b) t = 45 s After Satellite 1 Failure

Figure 7: Satellite Allocations for Test Case #2
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Figure 8: Manoeuvre Test Case #2

Test Case #3: Multiple Satellite Types

(a) t = 0s (b) t = 2.6s

(c) t = 3.2s (d) t = 8s

Figure 9: Time Evolution of Coupled Selection Equation Strengths - Radius of Sphere Repre-
sents Strength of Pairing Between Target k and Satellite Combinations i and j.
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In this demonstration, a constellation of 6 satellites - 3 of type 1 and 3 of type 2 - are initially
equi-spaced in geostationary orbit. 3 targets are identified on the Earth’s surface, and the Coupled
Selection Equations are used to determine which two satellites of each type are allocated to which
targets. The equations again converge quickly, and snapshots of their time evolution are given in
Figure 9. Here, the selection variables converge in pairs - i.e. the top (red) layer represents the
possible pairs of satellites of both types that can visit target 1, the green layers represents the same
for target 2, etc. Only one variable in each layer should persist after convergence.

Figure 10: Satellite Allocations for Test Case #3

The on-orbit allocations from this demonstration case are given in Figure 10, and manoeuvre re-
sults are given in Figure 11 - where Figure 11a displays the time histories of the satellite longitudes,
and Figure 11b shows the final on-orbit positions of the satellites with respect to the targets.
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Figure 11: Manoeuvre Test Case #3
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CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper has demonstrated a novel solution to the problem of autonomous task allocation on a
self-organising constellation of small satellites. Coupled Selection Equations have been shown to
converge to solutions which solve the linear two-index assignment problem and axial three-index
assignment problem, providing the optimal pairings between satellite members and targets on the
Earth’s surface.

Demonstrations of the efficacy of the method have been given with various levels of complexity.
Through these demonstrations, the method is shown provide these solutions quickly, without much
computational effort, and is also shown to be robust to satellite failures.

However, the work presented here has implemented a model of the Coupled Selection Equa-
tions which is propagated on a centralised architecture. In order for the autonomy to be embedded
within the constellation, the equations must be reformulated to work on a distributed architecture
where each agent propagates its own state using information from its neighbours. The reformu-
lated equations must be simple enough for agents with limited processing capabilities to propagate
them, and must still converge to a viable solution in the absence of information about the state of all
other members of the constellation or where time delays in communications are present. This work
provides a strong basis for these future developements for embedded autonomy.
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