39 research outputs found

    Genetic and Proteomic Evidence for Roles of Drosophila SUMO in Cell Cycle Control, Ras Signaling, and Early Pattern Formation

    Get PDF
    SUMO is a protein modifier that is vital for multicellular development. Here we present the first system-wide analysis, combining multiple approaches, to correlate the sumoylated proteome (SUMO-ome) in a multicellular organism with the developmental roles of SUMO. Using mass-spectrometry-based protein identification, we found over 140 largely novel SUMO conjugates in the early Drosophila embryo. Enriched functional groups include proteins involved in Ras signaling, cell cycle, and pattern formation. In support of the functional significance of these findings, sumo germline clone embryos exhibited phenotypes indicative of defects in these same three processes. Our cell culture and immunolocalization studies further substantiate roles for SUMO in Ras signaling and cell cycle regulation. For example, we found that SUMO is required for efficient Ras-mediated MAP kinase activation upstream or at the level of Ras activation. We further found that SUMO is dynamically localized during mitosis to the condensed chromosomes, and later also to the midbody. Polo kinase, a SUMO substrate found in our screen, partially colocalizes with SUMO at both sites. These studies show that SUMO coordinates multiple regulatory processes during oogenesis and early embryogenesis. In addition, our database of sumoylated proteins provides a valuable resource for those studying the roles of SUMO in development

    A 4D-trajectory planning method based on hybrid optimization strategy for demand and capacity balancing

    Get PDF
    To effectively solve the Demand and Capacity Balancing (DCB) in future Trajectory-Based Operation (TBO) scenarios, this article first proposes a pre-tactical-and-tactical integrated Four-Dimensional Trajectory (4DT) planning framework. The framework decomposes large-scale 4DT planning into two stages, namely, the General 4DT (G4DT) planning in the pre-tactical stage and the Special 4DT (S4DT) planning in the tactical stage. A Hybrid Optimization Strategy (HOS) based planning method is designed for G4DT planning. In this method, the sequential decision architecture based on time window, heuristic strategy (greedy strategy) and optimization algorithm are combined to realize the fast trajectory planning of large-scale flights. In the optimization model based on continuous time, the nonlinear model is transformed into a linear model by constructing the flight conflict correlation matrix, which greatly improves the solving speed of the model. Real flight schedule data for French and Spanish airspace were used to verify the effectiveness and efficiency of the HOS method. This method is compared with Computer-Assisted Slot Allocation (CASA). The results show that the proposed method can effectively reduce the flight delay time and improve the flight on-time rate. Due to its fast operation speed, the proposed method has great potential to dynamically update the planning results according to the real-time air space operation status in actual operation

    Different modes and potencies of translational repression by sequence-specific RNA–protein interaction at the 5′-UTR

    Get PDF
    To determine whether sequence-specific RNA–protein interaction at the 5′-untranslated region (5′-UTR) can potently repress translation in mammalian cells, a bicistronic translational repression assay was developed to permit direct assessment of RNA–protein interaction and translational repression in transiently transfected living mammalian cells. Changes in cap-dependent yellow fluorescent protein (YFP) and internal ribosome entry sequence (IRES)-dependent cyan fluorescent protein (CFP) translation were monitored by fluorescence microscopy. Selective repression of YFP or coordinate repression of both YFP and CFP translation occurred, indicating two distinct modes by which RNA-binding proteins repress translation through the 5′-UTR. Interestingly, a single-stranded RNA-binding protein from Bacillus subtilis, tryptophan RNA-binding attenuation protein (TRAP), showed potent translational repression, dependent on the level of TRAP expression and position of its cognate binding site within the bicistronic reporter transcript. As the first of its class to be examined in mammalian cells, its potency in repression of translation through the 5′-UTR may be a general feature for this class of single-stranded RNA-binding proteins. Finally, a one-hybrid screen based on translational repression through the 5′-UTR identified linkers supporting full-translational repression as well as a range of partial repression by TRAP within the context of a fusion protein

    Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability

    No full text
    Covalent attachment of ubiquitin (Ub) or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL) family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses

    Skip metastasis in papillary thyroid carcinoma is difficult to predict in clinical practice

    No full text
    Abstract Background Cervical lymph node metastases are very common in papillary thyroid cancer (PTC), and typically spread in a predictable stepwise fashion in clinical practice. However, lateral lymph node metastasis (LLNM) without central lymph node metastasis (CLNM) as skip metastasis is not rare in PTC. The aim of this study was to investigate the incidence, risk factors and pattern of skip metastasis in PTC. Methods A total of 271 patients with PTC and suspicious LLN diagnosed by pre-operation examinations who underwent total thyroidectomy and central lymph node dissection plus lateral lymph node dissection between January 2008 and December 2011 were enrolled in this study. Clinicopathological features were collected, and the pattern of cervical lymph node metastasis and skip metastasis were analyzed. Results The LLNM rate was 74.9% (203/271, diagnosed by postoperative pathology examination) and significantly associated with extrathyroid extension (ETE), primary tumor located at the upper pole, and CLNM (p < 0.05). The skip metastasis rate was 14.8% (30/203) and was more frequently found in microcarcinoma patients, especially when the primary tumor size was ≤0.5 cm (p = 0.001 OR = 12.9). However, skip metastasis was unrelated to the remaining factors examined. Conclusion Small cancers with a pre-operation diagnosis of LLNM are more likely to have skip metastases, especially when the primary tumor size is less than 0.5 cm in diameter; however, this type of metastasis appears to develop in a random fashion. Thus, additional research is needed to identify potential predictive factors, such as a primary tumor located at the upper pole

    Risk factors analyses for lateral lymph node metastases in papillary thyroid carcinomas: a retrospective study of 356 patients

    No full text
    ABSTRACT Objective The aim of this study was to investigate the incidence and risk factors for lateral lymph node metastasis (LLNM) in patients with papillary thyroid carcinoma (PTC). Subjects and methods 356 patients diagnosed with PTC who underwent total thyroidectomy and central lymph node dissection and lateral lymph node dissection between January 2005 and December 2011 were enrolled. The relation between LLNM and clinicopathological features such as gender, age, tumor size, tumor spread, psammoma bodies, tumor multifocality, extrathyroidal extension (ETE), unilateral or bilateral disease, tumor primary location and central lymph node metastases (CLNM) was analyzed. Results The rate of LLNM was 75.0%. In the univariate analysis, it was significantly associated with age, tumor size, tumor spread, extrathyroidal extension, primary tumor location and central lymph node metastasis (p 1.5 cm with p = 0.05 but was unrelated to the other factors. Conclusion Patients with PTC, with the primary tumor located in the upper part of the lobe and positive central compartment lymph node metastasis with a tumor size > 1.5 cm diameter are more likely to have LLNM. Therefore, more meticulous evaluations including the lateral lymph nodes should be performed before surgery

    Antagonistic regulation of Yan nuclear export by Mae and Crm1 may increase the stringency of the Ras response

    No full text
    Phosphorylation of Yan, a major target of Ras signaling, leads to Crm1-dependent Yan nuclear export, a response that is regulated by Yan polymerization. Yan SAM (sterile α motif) domain mutations preventing polymerization result in Ras-independent, but Crm1-dependent Yan nuclear export, suggesting that polymerization prevents Yan export. Mae, which depolymerizes Yan, competes with Crm1 for binding to Yan. Phosphorylation of Yan favors Crm1 in this competition and counteracts inhibition of nuclear export by Mae. These findings suggest that, prior to Ras activation, the Mae/Yan interaction blocks premature nuclear export of Yan monomers. After activation, transcriptional up-regulation of Mae apparently leads to complete depolymerization and export of Yan
    corecore