10 research outputs found

    Adaptive Control of MEMS Gyroscope Based on T-S Fuzzy Model

    Get PDF
    A multi-input multioutput (MIMO) Takagi-Sugeno (T-S) fuzzy model is built on the basis of a nonlinear model of MEMS gyroscope. A reference model is adjusted so that a local linear state feedback controller could be designed for each T-S fuzzy submodel based on a parallel distributed compensation (PDC) method. A parameter estimation scheme for updating the parameters of the T-S fuzzy models is designed and analyzed based on the Lyapunov theory. A new adaptive law can be selected to be the former adaptive law plus a nonnegative in variable to guarantee that the derivative of the Lyapunov function is smaller than zero. The controller output is implemented on the nonlinear model and T-S fuzzy model, respectively, for the purpose of comparison. Numerical simulations are investigated to verify the effectiveness of the proposed control scheme and the correctness of the T-S fuzzy model

    Robust H

    Get PDF
    The robust filtering problem for a class of uncertain discrete-time fuzzy stochastic systems with sensor nonlinearities and time-varying delay is investigated. The parameter uncertainties are assumed to be time varying norm bounded in both the state and measurement equations. By using the Lyapunov stability theory and some new relaxed techniques, sufficient conditions are proposed to guarantee the robustly stochastic stability with a prescribed H∞ performance level of the filtering error system for all admissible uncertainties, sensor nonlinearities, and time-varying delays. These conditions are dependent on the lower and upper bounds of the time-varying delays and are obtained in terms of a linear matrix inequality (LMI). Finally, two simulation examples are provided to illustrate the effectiveness of the proposed methods

    Convergence Analysis of a Class of Computational Intelligence Approaches

    No full text
    Computational intelligence approaches is a relatively new interdisciplinary field of research with many promising application areas. Although the computational intelligence approaches have gained huge popularity, it is difficult to analyze the convergence. In this paper, a computational model is built up for a class of computational intelligence approaches represented by the canonical forms of generic algorithms, ant colony optimization, and particle swarm optimization in order to describe the common features of these algorithms. And then, two quantification indices, that is, the variation rate and the progress rate, are defined, respectively, to indicate the variety and the optimality of the solution sets generated in the search process of the model. Moreover, we give four types of probabilistic convergence for the solution set updating sequences, and their relations are discussed. Finally, the sufficient conditions are derived for the almost sure weak convergence and the almost sure strong convergence of the model by introducing the martingale theory into the Markov chain analysis

    Stability Analysis of Impulsive Stochastic Functional Differential Equations with Delayed Impulses via Comparison Principle and Impulsive Delay Differential Inequality

    No full text
    The problem of stability for nonlinear impulsive stochastic functional differential equations with delayed impulses is addressed in this paper. Based on the comparison principle and an impulsive delay differential inequality, some exponential stability and asymptotical stability criteria are derived, which show that the system will be stable if the impulses’ frequency and amplitude are suitably related to the increase or decrease of the continuous stochastic flows. The obtained results complement ones from some recent works. Two examples are discussed to illustrate the effectiveness and advantages of our results

    Convergence Analysis of a Class of Computational Intelligence Approaches

    No full text
    Computational intelligence approaches is a relatively new interdisciplinary field of research with many promising application areas. Although the computational intelligence approaches have gained huge popularity, it is difficult to analyze the convergence. In this paper, a computational model is built up for a class of computational intelligence approaches represented by the canonical forms of generic algorithms, ant colony optimization, and particle swarm optimization in order to describe the common features of these algorithms. And then, two quantification indices, that is, the variation rate and the progress rate, are defined, respectively, to indicate the variety and the optimality of the solution sets generated in the search process of the model. Moreover, we give four types of probabilistic convergence for the solution set updating sequences, and their relations are discussed. Finally, the sufficient conditions are derived for the almost sure weak convergence and the almost sure strong convergence of the model by introducing the martingale theory into the Markov chain analysis

    Filtering for Discrete-Time Stochastic Systems with Nonlinear Sensor and Time-Varying Delay

    No full text
    The filtering problem for a class of discrete-time stochastic systems with nonlinear sensor and time-varying delay is investigated. By using the Lyapunov stability theory, sufficient conditions are proposed to guarantee the asymptotical stablity with an prescribe performance level of the filtering error systems. These conditions are dependent on the lower and upper bounds of the discrete time-varying delays and are obtained in terms of a linear matrix inequality (LMI). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods

    Robust non-fragile stabilisation and H

    No full text

    Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries

    Get PDF
    Polypyrrole@Sulfur@Polypyrrole composite with a novel three-layer-3D-structure, which consists of an external polypyrrole coating layer, an intermediate sulfur filling layer, and an internal polypyrrole split-half-tube conducting matrix layer, has been synthesized by the oxidative chemical polymerization method and chemical precipitation method in this article. Due to this unique three-layer-structure, the discharge specific capacity of Polypyrrole@Sulfur@Polypyrrole composite cathode retained at 554mAh g-1 after 50 cycles, which represents 68.8% retention of the initial discharge specific capacity. In comparison, the Sulfur@Polypyrrole composite cathode, with the same components as Polypyrrole@Sulfur@Polypyrrole composite, but without the three-layer-structure, has the discharge specific capacity of 370mAh g-1 after 50 cycles, which is 32.3% retention of the initial discharge specific capacity. Therefore, it can be concluded that the unique three-layer-structure plays an essential role in improving the performance of the Lithium/Sulfur batteries. Moreover, the effects of LiNO3 additive in the electrolyte on coulombic efficiency are discussed to further confirm the containment function of the external layer of polypyrrole in the Polypyrrole@Sulfur@Polypyrrole composite, which is the evidence that the external layer of polypyrrole can effectively confine the dissolved polysulfides
    corecore