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A multi-input multioutput (MIMO) Takagi-Sugeno (T-S) fuzzy model is built on the basis of a nonlinear model of MEMS
gyroscope. A reference model is adjusted so that a local linear state feedback controller could be designed for each T-S fuzzy
submodel based on a parallel distributed compensation (PDC) method. A parameter estimation scheme for updating the
parameters of the T-S fuzzy models is designed and analyzed based on the Lyapunov theory. A new adaptive law can be selected
to be the former adaptive law plus a nonnegative in variable to guarantee that the derivative of the Lyapunov function is smaller
than zero. The controller output is implemented on the nonlinear model and T-S fuzzy model, respectively, for the purpose of
comparison. Numerical simulations are investigated to verify the effectiveness of the proposed control scheme and the correctness
of the T-S fuzzy model.

1. Introduction

Gyroscopes are commonly used sensors in navigation, auto-
mobile, and so forth. The performance of the MEMS gyro-
scope is often deteriorated by the effects of time varying
parameters, quadrature errors, and external disturbances.
Advanced control such as adaptive control and intelligent
control are necessary to be adopted to control the MEMS
gyroscope. In the last few years, various control approaches
have been proposed to control theMEMSgyroscope. Increas-
ing attention has been given to the tracking control of
MEMSgyroscope. Leland [1] derived two adaptive controllers
for a MEMS gyroscope that tune the drive axis natural
frequency to a preselected frequency and drive the sense axis
vibration to zero for force-to-rebalance operation. Sung et
al. [2] proposed a phase-domain design approach to study
the mode-matched control of gyroscope. Antonello et al. [3]
derived extremum-seeking control to automatically match
the vibrationmode inMEMS vibrating gyroscopes. Park et al.
[4] presented an adaptive controller for a MEMS gyroscope
which drives both axes of vibration and controls the entire
operation of the gyroscope. John and Vinay [5] developed
a novel concept for an adaptively controlled triaxial angu-
lar velocity sensor device. Sliding mode control has been

incorporated into adaptive controller to control the MEMS
gyroscopes [6, 7]. Model uncertainties and disturbances are
inevitable in actual engineering and require the controller
to be either adaptive or robust to these model uncertainties.
Adaptive fuzzy sliding mode controller can be utilized to
compensate the model uncertainties and disturbances since
it combines the merits of the sliding mode control, the fuzzy
inference mechanism, and the adaptive algorithm. Wang
[8] demonstrated that an arbitrary function of a certain set
of functions can be approximated with arbitrary accuracy
using fuzzy system on a compact domain using universal
approximation theorem. Guo and Woo [9] derived adaptive
fuzzy sliding mode controller for robot manipulator. Yoo and
Ham [10] developed adaptive controller for robot manipula-
tor using fuzzy compensator. Wai [11] proposed fuzzy sliding
mode controller using adaptive tuning technique. Chang et al.
[12] designed and implemented fuzzy slidingmode formation
control for multirobot systems. Chien et al. [13] developed
robust adaptive controller design for a class of uncertain
nonlinear systems using online T-S fuzzy-neural modeling
approach. Stabilizing controller design for uncertain nonlin-
ear systems using fuzzy models was investigated in [14]. Park
and Cho [15] designed T-S model based indirect adaptive
fuzzy controller using online parameter estimation.
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The system nonlinearities in MEMS gyroscope model
have been described in [16–18]. Since there are system
nonlinearities in MEMS gyroscope, it is necessary to use
robust adaptive fuzzy controller to MEMS gyroscope and
utilize T-S fuzzymodel to represent the systemnonlinearities.

Systematic stability analysis and controller design of the
adaptive fuzzy controller using T-S fuzzy model for MEMS
gyroscope have not been investigated before. The advantage
of the proposed adaptive T-S fuzzy controller over other
controllers is that it can represent system nonlinearities using
T-S fuzzy model in the aspect of robust design. Thus, it
can overcome the impacts on output tracking error that are
caused bymodel uncertainties and external disturbances.The
proposed T-S modeling method can provide a possibility
for developing a systematic analysis and design method
for complex nonlinear control systems, thus improving the
tracking and compensation performance.Thus it is necessary
to adopt the adaptive fuzzy control scheme to approximate
the nonlinear system and compensate model uncertainties
and external disturbances in the control of MEMS gyroscope
using T-S fuzzy model.

In this paper, the Lyapunov-based robust adaptive fuzzy
control strategy is applied to the tracking control of MEMS
gyroscope using T-S fuzzy model. The paper integrates
adaptive control and the nonlinear approximation of fuzzy
control with T-S fuzzy model. The proposed adaptive fuzzy
T-S controller can guarantee the asymptotic stability of the
closed loop system and improve the robustness of control
system in the presence of model uncertainties and external
disturbances. The proposed controller has the following
characteristics and contributions.

(1) Since the reference model is marginally stable, the
reference model is required to be revised so that the
local linear state feedback controller can be designed
for each T-S fuzzy submodel based on PDC. The
partial parameters of the reference control matrix
are changed and then the reference input is changed
accordingly to guarantee that the changed reference
model is equivalent to previous one.

(2) To improve the performance of the control system,
the corresponding improvement is made to the adap-
tive law. The new adaptive law can be chosen to
be the previous adaptive law plus a robust term
to guarantee that the derivative of the Lyapunov
function is negative rather than nonpositive.

(3) The proposed estimator for the existing fuzzy state
feedback controller can achieve a good robust per-
formance against parameter uncertainties. The con-
troller output is implemented in the T-S fuzzy model
and nonlinear model, respectively, to verify the valid-
ity of the adaptive fuzzy control with parameter
estimation scheme and prove the correctness of the T-
S model and the feasibility of the proposed controller
on the nonlinear model of gyroscope.
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Figure 1: 𝑍-axis vibratory MEMS gyroscope with nonlinear effec-
tive spring.

2. Dynamics of MEMS Gyroscope

Assume that the gyroscope is moving with a constant linear
speed; the gyroscope is rotating at a constant angular velocity;
the centrifugal forces are assumed negligible; the gyroscope
undergoes rotations along 𝑧-axis as shown in Figure 1.
Referring to [4, 16, 17], the dynamics equations of gyroscope
system are as follows:
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where𝑚 is the mass of proof mass. Fabrication imperfections
contribute mainly to the asymmetric spring term 𝑑
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, and
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Define new parameters as follows:
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For the convenience of notation, ignoring the superscript
yields the final form of the nondimensional equation of
motion for the 𝑧-axis gyroscope
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3. Adaptive Fuzzy Control Based on PDC

TheMIMO T-S fuzzy model of the MEMS gyroscope, which
is composed of 𝑖 rules, is established based on the nonlinear
model of MEMS gyroscope. Use the fuzzy implications and
the fuzzy reasoningmethods suggested by Takagi and Sugeno
[19] to express a real plant model; the T-S fuzzy model uses
fuzzy implication of the following form:
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The defuzzification fuzzy dynamic system model can be
expressed using center-average defuzzifier, product inference,
and singleton fuzzifier
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Since the control target for MEMS gyroscope is to
maintain the proof mass to oscillate in the 𝑥 and 𝑦 direction
at given frequency and amplitude, 𝑥 = 𝐴
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Since the reference model is nonasymptotically stable, the
nonlinear T-S fuzzy model cannot be asymptotically stable.
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According to PDC [14], we design local state linear
feedback controllers for each linear submodel. The fuzzy
control rules are as the following forms:
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The controller output can be expressed using center-average
defuzzifier, product inference, and singleton fuzzifier
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Substituting the controller force (12) into the fuzzy system (7)
yields the desired model
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4. Parameter Estimation

The block diagram of the adaptive fuzzy control using T-S
fuzzy model is shown as in Figure 2. Taking the parameter
uncertainty into account, then the parameter estimation is
applied to the adaptive fuzzy control. The adaptive law can
guarantee the asymptotic convergence of the error between
the plant model state and the estimation model state and
make the closed loop system of fuzzy controller and estima-
tion model be a desired linear model and, consequently, the
plant model state can follow the state of the desired linear
model.The controller output is implemented in the nonlinear
model also to prove the correctness of the T-S model and the
feasibility of the proposed control scheme on the nonlinear
model of MEMS gyroscope.
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𝑎
𝑖

12
𝑎
𝑖

13
𝑎
𝑖

14

𝑎
𝑖

21
𝑎
𝑖

22
𝑎
𝑖

23
𝑎
𝑖

24

1 0 0 0

0 1 0 0

]
]
]
]
]
]

]

𝑖 = 1, 2, . . . , 9

(16)

is the estimate of 𝐴
𝑖
.

By considering the plant parameterization, (7) can be
rewritten as

̇𝑞 (𝑡) = 𝐴
𝑠
𝑞 (𝑡) +

∑
9

𝑖=1
𝜇
𝑖
(𝜂) [(𝐴

𝑖
− 𝐴
𝑠
) 𝑞 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)]

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

,

(17)

where 𝐴
𝑠
is an arbitrary stable matrix.

Define the estimation mode as the following formula:

̇̂𝑞 (𝑡) = 𝐴
𝑠
𝑞 (𝑡) +

∑
9

𝑖=1
𝜇
𝑖
(𝜂) [(𝐴

𝑖
− 𝐴
𝑠
) 𝑞 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)]

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

.

(18)

The estimationmodel (18) can be the same one as by adopting
the control input (15)

̂̇𝑞
𝑚
= 𝐴
𝑚
𝑞
𝑚
+ 𝐵
𝑚
𝑟. (19)

The estimation error 𝑒(𝑡) = 𝑞(𝑡) − 𝑞
𝑚
(𝑡)meets (19) and (20)

̇𝑒 (𝑡) = 𝐴
𝑠
𝑒 (𝑡) +

∑
9

𝑖=1
𝜇
𝑖
(𝜂) (𝐴

𝑖
− 𝐴
𝑖
) 𝑞 (𝑡)

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

= 𝐴
𝑠
𝑒 (𝑡) −

∑
9

𝑖=1
𝜇
𝑖
(𝜂) [𝛼̃

1𝑖
𝛼̃
2𝑖

0 0]
𝑇

𝑞 (𝑡)

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

,

(20)

̇𝑒
𝑇

(𝑡) = 𝑒 (𝑡) 𝐴
𝑇

𝑠
−
∑
9

𝑖=1
𝜇
𝑖
(𝜂) 𝑞
𝑇

(𝑡) [𝛼̃
1𝑖

𝛼̃
2𝑖

0 0]

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

, (21)
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Plant model
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Ki(t)𝜇i(𝜂)

eNON

qdx = Axsin 𝜔xt)

qdy = Aysin 𝜔yt)

rx = Ax𝜔xcos
ry = Ay𝜔ycos

u(t) =
∑9

i=1𝜇i(𝜂)

∑9
i=1𝜇i(𝜂)

[− K̂iq(t) + r(t)]

ã
T
i = 𝛾i

𝜇i(𝜂)

∑9
i=1𝜇i(𝜂)

e(t)qT(t) − 𝜌sgn(ãi)[PT
1 PT

2 ]

1 = (2S − D) 1 + (Ω2
z − K1)q1 − K3q

3
1 + u

(t) = Amq(t) +
∑9

i=1𝜇i(𝜂)[(Ai − Am)q(t) + Biu(t)]

N
i=1𝜇i(𝜂)∑

(t) = Amq̂(t) +
∑9

i=1𝜇i(𝜂)[(Ai − Am)q(t) + Biu(t)]

N
i=1𝜇i(𝜂)∑

q̂

)

𝜔xt))

)

𝜔yt))

..
q

.

.

.

q

.
q

Figure 2: The block diagram of the adaptive fuzzy control using T-S fuzzy model.

where 𝑒(𝑡) actually is the tracking error between the
plant model (7) and the estimation model (18), 𝛼̃

𝑖
(𝑡) =

[𝛼̃
1𝑖
(𝑡) 𝛼̃
2𝑖
(𝑡) 0 0], 𝛼̃

1𝑖
(𝑡) = 𝛼̂

1𝑖
(𝑡) − 𝛼

1𝑖
, 𝛼̂
1𝑖
(𝑡) =

[𝑎
𝑖

11
(𝑡) 𝑎

𝑖

12
(𝑡) 𝑎

𝑖

13
(𝑡) 𝑎

𝑖

14
(𝑡)], 𝛼

1𝑖
= [𝑎

𝑖

11
𝑎
𝑖

12
𝑎
𝑖

13
𝑎
𝑖

14
],

𝛼̃
2𝑖
(𝑡) = 𝛼̂

2𝑖
(𝑡) − 𝛼

2𝑖
, 𝛼̂
2𝑖

= [𝑎
𝑖

21
(𝑡) 𝑎

𝑖

22
(𝑡) 𝑎

𝑖

23
(𝑡) 𝑎

𝑖

24
(𝑡)],

𝛼
2𝑖
= [𝑎
𝑖

21
𝑎
𝑖

22
𝑎
𝑖

23
𝑎
𝑖

24
].

Remark 2. The estimation error 𝑒(𝑡) can be thought of as
the tracking error 𝑒T-S between the plant model (7) and the
desired linear model (14) because 𝑒(𝑡) = 𝑞(𝑡) − 𝑞

𝑚
(𝑡) and

𝑒T-S(𝑡) = 𝑞(𝑡) − 𝑞
𝑚
(𝑡) have the same control matrix, while the

tracking error 𝑒NON between the referencemodel (14) and the
nonlinear model (5) is used to prove the correctness of the T-
S model and the feasibility of the proposed controller on the
nonlinear model of gyroscope.

Define a Lyapunov function candidate as

𝑉 (𝑡) = 𝑉 (𝑒, 𝑎
1𝑖
, 𝑎
2𝑖
) = 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡)

+

9

∑

𝑖=1

𝑎
𝑇

1𝑖
(𝑡) 𝑎
1𝑖
(𝑡)

𝛾
1𝑖

+

9

∑

𝑖=1

𝑎
𝑇

2𝑖
(𝑡) 𝑎
2𝑖
(𝑡)

𝛾
2𝑖

,

(22)

where 𝑃meet 𝐴𝑇
𝑠
𝑃 + 𝑃𝐴

𝑠
= −𝐼.

The derivative of 𝑉 with respect to time becomes

𝑉̇ (𝑡) = ̇𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) + 𝑒
𝑇

(𝑡) 𝑃 ̇𝑒 (𝑡)

+

9

∑

𝑖=1

2

̇̃𝑎
𝑇

1𝑖
(𝑡) 𝑎
1𝑖
(𝑡)

𝛾
1𝑖

+

9

∑

𝑖=1

2

̇̃𝑎
𝑇

2𝑖
(𝑡) 𝑎
2𝑖
(𝑡)

𝛾
2𝑖

.

(23)

Substituting (20), (21) into the derivative of 𝑉 yields

𝑉̇ (𝑡) = − 𝑒
𝑇

(𝑡) (𝐴
𝑇

𝑠
𝑃 + 𝑃𝐴

𝑠
) 𝑒 (𝑡)

− 2
∑
9

𝑖=1
𝜇
𝑖
(𝜂) 𝑃
𝑇

1
𝑒 (𝑡) 𝑞

𝑇

(𝑡) 𝑎
2𝑖(𝑡)

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

− 2
∑
9

𝑖=1
𝜇
𝑖
(𝜂) 𝑃
𝑇

2
𝑒 (𝑡) 𝑞

𝑇

(𝑡) 𝑎
2𝑖
(𝑡)

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

+

9

∑

𝑖=1

2

̇̃𝑎
𝑇

1𝑖
(𝑡) 𝑎
1𝑖
(𝑡)

𝛾
1𝑖

+

9

∑

𝑖=1

2

̇̃𝑎
𝑇

2𝑖
(𝑡) 𝑎
2𝑖
(𝑡)

𝛾
2𝑖

,

(24)

where 𝑃 = [𝑃
1

𝑃
2

𝑃
3

𝑃
4
].

The adaptive law can be chosen as

̇̃𝑎
𝑇

𝑖
= 𝛾
𝑖

𝜇
𝑖
(𝜂)

∑
9

𝑖=1
𝜇
𝑖
(𝜂)

[𝑃
𝑇

1
𝑃
𝑇

2
] 𝑒 (𝑡) 𝑞

𝑇

(𝑡)

− 𝜌 sgn (𝑎
𝑖
(𝑡)) 𝜌 > 0,

(25)

where the sgn function can be defined as

sgn (𝑎
𝑖
) =

{{{{

{{{{

{

1 𝑎
𝑖
> 0

0 𝑎
𝑖
= 0

−1 𝑎
𝑖
< 0.

(26)
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Figure 3: Membership functions.

Substituting (25) into (24) yields

𝑉̇ (𝑡) = − 𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 2𝜌

9

∑

𝑖=1

sgn (𝑎
1𝑖
(𝑡)) 𝑎
1𝑖
(𝑡)

𝛾
1𝑖

− 2𝜌

9

∑

𝑖=1

sgn (𝑎
2𝑖
(𝑡)) 𝑎
2𝑖
(𝑡)

𝛾
2𝑖

= − 𝑒
𝑇

(𝑡) 𝑒 (𝑡) − 2𝜌

9

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎1𝑖 (𝑡)
󵄨󵄨󵄨󵄨

𝛾
1𝑖

− 2𝜌

9

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎2𝑖 (𝑡)
󵄨󵄨󵄨󵄨

𝛾
2𝑖

≤ − 𝑒
𝑇

(𝑡) 𝑒 (𝑡) ≤ − ‖𝑒 (𝑡)‖
2

≤ 0.

(27)

𝑉(𝑡) ≥ 0 and 𝑉̇(𝑡) ≤ 0 imply the boundedness of 𝑒(𝑡) and
𝛼̃
𝑖
(𝑡), the control is bounded for all time, (21) implies ̇𝑒(𝑡) is

also bounded, and inequality (27) implies 𝑒(𝑡) ∈ 𝐿
2. Then,

with 𝑒(𝑡) ∈ 𝐿
2

∩ 𝐿
∞ and ̇𝑒(𝑡) ∈ 𝐿

∞, according to Barbalat’s
lemma [20], the tracking error 𝑒(𝑡) asymptotically converges
to zero.

5. Simulation Analysis

In this section, we will evaluate the proposed adaptive fuzzy
control using T-S model approach on the lumped MEMS
gyroscope sensormodel. Parameters of theMEMS gyroscope
sensor are as follows:

𝑚 = 0.57𝑒 − 8 kg, 𝜔
0
= 1 kHz, 𝑞

0
= 10𝑒 − 6m,

𝑑
𝑥𝑥

= 0.429𝑒 − 6Ns/m, 𝑑
𝑦𝑦

= 0.0429𝑒 − 6Ns/m,

𝑑
𝑥𝑦

= 0.0429𝑒 − 6Ns/m, 𝑘
𝑥𝑥

= 80.98N/m,

𝑘
𝑦𝑦

= 71.62N/m, 𝑘
𝑥𝑦

= 5N/m,

𝑘
𝑥
3 = 3.56𝑒12N/m,

𝑘
𝑦
3 = 3.56𝑒12N/m, Ω

𝑧
= 5.0 rad/s.

(28)

Since the general displacement range of the MEMS
gyroscope sensor in each axis is submicrometer level, it
is reasonable to choose 1 𝜇m as the reference length 𝑞

0
.

Given that the usual natural frequency of each axle of a
vibratory MEMS gyroscope sensor is in the kHz range, 𝜔

0
is

chosen as 1 kHz. The unknown angular velocity is assumed
Ω
𝑧

= 5.0 rad/s. The desired motion trajectories are 𝑥
𝑚

=

𝐴
𝑥
sin(𝜔
𝑥
𝑡), 𝑦
𝑚

= 𝐴
𝑦
sin(𝜔
𝑦
𝑡), where 𝐴

𝑥
= 1, 𝐴

𝑦
= 1.2,

𝜔
𝑥
= 6.71 kHz, and 𝜔

𝑦
= 5.11 kHz.

The plant parameters are adjusted online by adaptive
law (24) where the adaptive gain 𝛾

𝑖
= 1 and the adaptive

parameter 𝜌 = 1. The initial values of T-S model are
[0.2, 0.24, 0, 0], initial values of the estimation model are
[0, 0, 0, 0], and initial values of the nonlinear model are
[0.2, 0.24, 0, 0]. The external disturbance is 𝑑 = [

𝑑𝑥

𝑑𝑦

] =

[
10 sin(2𝜋𝑡)
10 sin(2𝜋𝑡) ].𝐴𝑚 = [

−1 0 −𝜔
2

𝑥
0

0 −1 0 −𝜔
2

𝑦

1 0 0 0

0 1 0 0

] and the eigenvalues of𝐴
𝑚

are {−0.5±6.6916𝑖, −0.5±5.0855𝑖}. Although𝐴
𝑠
canmeet the

requirement of 𝐴
𝑠
in 𝐴
𝑇

𝑠
𝑃 + 𝑃𝐴

𝑠
= −𝐼, the values of first and

second column in 𝑃 which are [
0.51 0

0 0.52

0.01 0

0 0.02

] cannot adjust each

parameter since partial parameters are zero which is used as

adaptive gain in (24), so 𝐴
𝑠
is chosen as 𝐴

𝑠
= [

−1 −1 −1 −1

0 −1 0 0

0 0 −1 0

0 0 0 −1

]
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Figure 5: The change of plant parameters in 𝐴
5
.

to ensure that each parameter of first and second column in

𝑃 is nonzero values as [
0.5 −0.25

−0.25 0.75

−0.25 0.25

−0.25 0.25

].

The fuzzy rules for T-S fuzzy model for the system can be
obtained by linearizing the nonlinear model (5) at the points
𝑥 ∈ {−1 0 1}, 𝑥̇ ∈ {−𝐴

𝑥
𝜔
𝑥

0 𝐴
𝑥
𝜔
𝑥
}, 𝑦 ∈ {−1.2 0 1.2},

and ̇𝑦 ∈ {−𝐴
𝑦
𝜔
𝑦

0 𝐴
𝑦
𝜔
𝑦
} and then the membership

functions of states 𝑥, 𝑦, 𝑥̇, and ̇𝑦with respect to fuzzy set𝑀
𝑖1
,

𝑀
𝑖2
,𝑀
𝑖3
, and𝑀

𝑖4
used in the T-S fuzzy model are shown as

in Figure 3.
In this simulation, it is assumed that the physical parame-

ters in the T-S fuzzy model are not known exactly. Hence, the



8 Discrete Dynamics in Nature and Society

0 1 2 3

Time (s)

0 1 2 3

Time (s)

0 1 2 3

Time (s)

0 1 2 3

Time (s)

0 1 2 3

Time (s)

0 1 2 3

Time (s)

0 1 2 3

Time (s)

0 1 2 3

Time (s)

2.2

2.3

2.4

2.5

6.5

7

7.5

−0.08

−0.075

−0.07

−0.065

−1.6

−1.55

−1.5

−1.45

−1.4

−270

−260

−250

−240

−230

−1.45

−1.4

−1.35

−1.3

−1.25

−0.13

−0.12

−0.11

−0.1

−0.018

−0.017

−0.016

−0.015

A
7

[1
,1

]

A
7

[1
,2

]

A
7

[1
,3

]

A
7

[1
,4

]

A
7

[2
,1

]

A
7

[2
,2

]

A
7

[2
,3

]

A
7

[2
,4

]

×104

×104

×10−3

Figure 6: The change of plant parameters in 𝐴
7
.

parameters are tuned by the proposed adaptive law. The true
values of 𝐴∗

𝑖
of fuzzy T-S model are as shown in Table 1. The

initial value 𝐴
𝑖
= 0.9 ∗ 𝐴

∗

𝑖
. The variations of each parameter

in 𝐴
2
, 𝐴
5
, and 𝐴

7
are shown in Figures 4, 5, and 6. Here

only parts of parameters are shown in table for examples. In
Figures 4, 5, and 6 we can see each parameter converges to its
true value asymptotically.

Figure 7 depicts the tracking error of 𝑥- and 𝑦-axis
between the reference model and T-S model. It can be
observed from Figure 7 that the position of 𝑥 and 𝑦 in
the T-S model can track the position of reference model
in very short time and tracking errors converge to zero
asymptotically. The tracking error 𝑒T-S converges to zero
asymptotically rather than shocks near zero because the
new adaptive law is chosen to be the previous adaptive
law 𝛾
𝑖
(𝜇
𝑖
(𝜂)/∑

9

𝑖=1
𝜇
𝑖
(𝜂)) [𝑃

𝑇

1
𝑃
𝑇

2
] 𝑒(𝑡)𝑞

𝑇

(𝑡) plus a robust term
𝜌 sgn(𝛼̃

𝑖
) to guarantee that the derivative of the Lyapunov

function is negative rather than nonpositive. Figure 8 plots
the tracking error of 𝑥- and 𝑦-axis between the reference
model and the nonlinear model. We can notice that the
performance of the tracking errors in Figure 8 is worse than
that in Figure 7.

The tracking error 𝑒T-S shocks near zero because the
controller is designed based on the T-S model rather than
theNONmodel. FromFigures 7 and 8, we can see the validity
of the adaptive fuzzy control with parameter estimation
scheme on the T-S model and the feasibility of the proposed
controller on the nonlinear model of gyroscope. Then it
can be concluded that the MEMS gyroscope can maintain
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Figure 7: The tracking error 𝑒T-S between the reference model and
T-S model.

the proof mass oscillating in the 𝑥 and 𝑦 direction at
given frequency and amplitude by using adaptive T-S fuzzy
controller. The proposed T-S modeling method can provide
a possibility for developing a systematic analysis and design
method for complex nonlinear control systems, which can
approximate the nonlinear system and compensate model
uncertainties and external disturbances. It can be observed
from Figure 9 that the controller input of the adaptive fuzzy
controller is stable.
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Table 1: Parameters of T-S fuzzy model.
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Figure 8:The tracking error 𝑒NON between the reference model and
nonlinear model.

6. Conclusions

A T-S fuzzy model based adaptive controller for angular
velocity sensor is presented in this paper. An adaptive
T-S fuzzy compensator is used to approximate the model
uncertainties and external disturbances. The output of the
fuzzy controller is used as compensator to reduce the effects
of the system nonlinearities. The proposed new adaptive law
can guarantee that the derivative of the Lyapunov function
is negative rather than nonpositive. The proposed estimator
for the existing fuzzy state feedback controller can achieve
a good robust performance against parameter uncertainties.
Simulation studies are implemented to verify the effectiveness
of the proposed adaptive fuzzy control and the correctness of
the T-S fuzzy model. However, experimental demonstration
should be investigated to verify the validity of the proposed
approach in the next research step.
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Figure 9: Control input with the proposed controller.
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