494 research outputs found

    Strength and failure characteristics of marble spheres subjected to paired point loads

    Get PDF
    Failure of irregular rock samples may provide implications in the rapid estimation of rock strength, which is imperative in rock engineering practice. In this work, analytical, experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads. Analytical solutions indicted that with the increase in sample size (contact angle) and decrease in Poisson's ratio, the uneven tensile stress in theta direction decreased. Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads. The discrete element method (DEM) was adopted to study the failure process of rock spheres. The effect of the sphere diameter on the point load contact angle was examined in terms of peak load, crushed zone distribution and energy dissipation. Experimental and numerical results showed that the samples primarily fail in tension, with crushed zones formed at both loading points. With increase in the sample size, the contact angle, crushed area and total work increase. As the specimen diameter increases from 30 mm to 50 mm, the peak load on the specimen increases from 3.6 kN to 8.8 kN, and the percentage of crushed zone (ratio of crushing zone to sample radius, d/r) increased from 0.191 to 0.262. The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects

    A catalytic approach via retro-aldol condensation of glucose to furanic compounds

    Get PDF
    The synthesis of new types of furan-based compounds other than 5-hydroxymethylfurfural from glucose is a very attractive yet underexploited strategy. We report here a catalytic conversion of glucose with acetylacetone (acac) to furan-centered chemicals, 2-methyl-3-acetylfuran (MAF) and 1-(5-(1,2-dihydroxyethyl)-2-methylfuran-3-yl)ethan-1-one (DMAF), which are potential building blocks for the synthesis of fine chemicals. The experimentally supported reaction mechanism is cascade-type, including glycolaldehyde (GA) formation by H2MoO4-catalysed retro-aldol condensation (C2 + C4) of glucose and immediate capture of transient C2 and C4 intermediates by acac to yield MAF and DMAF. To the best of our knowledge, this is the first report on the straightforward synthesis of MAF and DMAF from glucose, providing a new but generic synthesis strategy for GA-based C2 and erythrose-based C4 chemistry in biorefining.Peer reviewe

    Modeling Dynamic Heterogeneous Graph and Node Importance for Future Citation Prediction

    Full text link
    Accurate citation count prediction of newly published papers could help editors and readers rapidly figure out the influential papers in the future. Though many approaches are proposed to predict a paper's future citation, most ignore the dynamic heterogeneous graph structure or node importance in academic networks. To cope with this problem, we propose a Dynamic heterogeneous Graph and Node Importance network (DGNI) learning framework, which fully leverages the dynamic heterogeneous graph and node importance information to predict future citation trends of newly published papers. First, a dynamic heterogeneous network embedding module is provided to capture the dynamic evolutionary trends of the whole academic network. Then, a node importance embedding module is proposed to capture the global consistency relationship to figure out each paper's node importance. Finally, the dynamic evolutionary trend embeddings and node importance embeddings calculated above are combined to jointly predict the future citation counts of each paper, by a log-normal distribution model according to multi-faced paper node representations. Extensive experiments on two large-scale datasets demonstrate that our model significantly improves all indicators compared to the SOTA models.Comment: Accepted by CIKM'202

    Experiments on bright field and dark field high energy electron imaging with thick target material

    Full text link
    Using a high energy electron beam for the imaging of high density matter with both high spatial-temporal and areal density resolution under extreme states of temperature and pressure is one of the critical challenges in high energy density physics . When a charged particle beam passes through an opaque target, the beam will be scattered with a distribution that depends on the thickness of the material. By collecting the scattered beam either near or off axis, so-called bright field or dark field images can be obtained. Here we report on an electron radiography experiment using 45 MeV electrons from an S-band photo-injector, where scattered electrons, after interacting with a sample, are collected and imaged by a quadrupole imaging system. We achieved a few micrometers (about 4 micrometers) spatial resolution and about 10 micrometers thickness resolution for a silicon target of 300-600 micron thickness. With addition of dark field images that are captured by selecting electrons with large scattering angle, we show that more useful information in determining external details such as outlines, boundaries and defects can be obtained.Comment: 7pages, 7 figure
    corecore