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ABSTRACT

Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,
which is imperative in rock engineering practice. In this work, analytical, experimental and numerical
investigations were carried out to study the mechanical properties and failure characteristics of rock
spheres under paired point loads. Analytical solutions indicted that with the increase in sample size
(contact angle) and decrease in Poisson’s ratio, the uneven tensile stress in theta direction decreased.
Then laboratory experiments were carried out to investigate the load characteristics and failure mode of
spherical marble samples with different sizes subjected to a pair of diametral point loads. The discrete
element method (DEM) was adopted to study the failure process of rock spheres. The effect of the sphere
diameter on the point load contact angle was examined in terms of peak load, crushed zone distribution
and energy dissipation. Experimental and numerical results showed that the samples primarily fail in
tension, with crushed zones formed at both loading points. With increase in the sample size, the contact
angle, crushed area and total work increase. As the specimen diameter increases from 30 mm to 50 mm,
the peak load on the specimen increases from 3.6 kN to 8.8 kN, and the percentage of crushed zone (ratio
of crushing zone to sample radius, d/r) increased from 0.191 to 0.262. The results of the study have
implications for understanding the failure of irregular rock specimens under point loading conditions
and their size effects.
© 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

quality. The tensile strength of rock is of paramount importance in
the tensile failure associated with a wide range of underground

Rocks, as a complex and widespread natural material, are
diverse in their mechanical behavior (Azarafza et al., 2019). The
acquisition and determination of physico-mechanical parameters,
such as compressive strength and tensile strength for rock mass,
are of great importance to geotechnical engineering design. Many
methods have been proposed to obtain the mechanical parame-
ters of rocks. Du et al. (2020) systematically summarized the
methods for obtaining static mechanical parameters of rocks in
laboratory.

The rapid and accurate acquisition of mechanical parameters of
rocks is essential for the construction and classification of rock

* Corresponding author.
E-mail address: mingtao@csu.edu.cn (M. Tao).
Peer review under responsibility of Institute of Rock and Soil Mechanics, Chi-
nese Academy of Sciences.

https://doi.org/10.1016/j.jrmge.2022.11.019

hazards. Thus, the tensile strength is a fundamental indicator.
Scholars have developed numerous methods to obtain the tensile
strength of rocks, including direct and indirect tensile tests
(Brown, 1981; Du et al., 2020). The indirect tensile tests are easier
to implement and are thus widely used to obtain rock tensile
strength and uniaxial compressive strength (UCS) in field and
laboratory (Sahin et al., 2020; Garrido et al., 2021). Examples of
indirect tensile tests include irregular point load strength tests
(Franklin, 1985; Akbay and Altindag, 2020; Fan et al., 2021) and
Brazilian tests. These typical methods for obtaining the tensile
strength of rock and their advantage and disadvantage were listed
in Table 1. Among them, the point load test is the fastest and does
not require specimen processing. It has been found that the UCS of
rock is related to the point-load strength (Garcia-Fernandez et al.,
2018). According to this, AlAwad (2020) improved the relationship
between the two mechanical parameters by introducing Poisson’s

1674-7755 © 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mingtao@csu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jrmge.2022.11.019&domain=pdf
www.sciencedirect.com/science/journal/16747755
http://www.jrmge.cn
https://doi.org/10.1016/j.jrmge.2022.11.019
https://doi.org/10.1016/j.jrmge.2022.11.019
https://doi.org/10.1016/j.jrmge.2022.11.019
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Zhao et al. / Journal of Rock Mechanics and Geotechnical Engineering 15 (2023) 2280—2290

2281

Table 1
Typical methods for obtaining the tensile strength of rock.
Method Equipment Schematic Tt
diagram

Advantage Disadvantage

Direct tensile test Mechanical test system FIA

Brazilian indirect tension
test

Mechanical test system 2F/(mtDt)

Point load test Hydraulic point load

tester or 1.4F/a?

Empirical fitting

High accuracy
Suitable for almost all rock types

Complex sample processing
Time-consuming experimental
process

High accuracy
Suitable for homogeneous rock
masses

Complex specimen processing

Fast Wide range of applicability
No specimen processing

Low accuracy

Note: F is the peak load, D is the diameter of the disc, t is the thickness, o is the tensile strength, and a is the half of the distance between the load points.

ratio as a correction factor. It is generally believed that the UCS of
rock is proportional to the point load index (Franklin, 1985) and
the size of sample also has a great influence on point load index
(Russell and Muir Wood, 2009). The Brazilian disc tests have been
widely used in testing for both brittle rock (Garcia-Fernandez
et al., 2018) and weak rock (Rabat et al., 2020). Extensive efforts
have been made on experimental and analytical investigations on
the Brazilian disc tests. Li and Wong, 2012 simulated the stress
and strain distribution in Brazilian disc tests using FLAC3D, and
the numerical results were consistent with theoretical and
experimental results (Markides and Kourkoulis, 2012). However,
few point load strength tests have been conducted on samples in
other shapes, such as sphere. Hiramatsu and Oka (1966) gained
the stress distribution of the spherical and disc-shaped samples
under point loads through three-dimensional (3D) photoelastic
tests, and the close form solution of the stress distribution in a
sphere under point loads was given. Moreover, a formula for
calculating the tensile strength of spherical rock based on point
loads was proposed. In the next few decades, many scholars have
studied point loads on rocks, mainly focusing on determining the
relationship between point load indicators and strength param-
eters of rocks. Wijk (1980) developed an eight-point circumfer-
ential point load equipment, and carry out experiments on
spherical and cylindrical samples. The experimental results
showed that the multi-point load index was greater than the
single-point load index. Russell and Muir Wood (2009) theoreti-
cally established the relationship between point load index, UCS
and tensile strength of rock. They presented a theoretical
expression of the correlation coefficient C as a function of contact
angle, loading device, and rock material properties. The results
were in good agreement with the actual UCS and tensile strength
obtained from experiments. Chau (1998), Chau and Wei (1999),
and Wei and Chau (2013) have further derived the analytical so-
lutions of stress distribution for different shaped samples (i.e.
isotropic sphere and cylinder) under point loads. The results
pointed out that the stress inhomogeneity induced by anisotropy
occurs at the center of the specimen. As a way of quickly obtaining
mechanical parameters of rocks, Brazilian disc test has been
extensively studied in terms of damage pattern of Brazilian discs.

Since the 2010s, novel techniques (i.e. digital image correlation
technology) have provided new insights on the investigation on
rock failure process (Sgambitterra et al., 2018). For instance, Li
et al. (2020) obtained the failure modes of five different rock
samples in Brazilian disc tests by the digital image correlation
technique with flat loading platens; flat loading platens with two
small-diameter steel rods and curved loading jaws, experimen-
tally assessed the damage patterns and crack initiation in Brazilian
discs under different loading conditions. The damage pattern of
specimen was determined by the stress distribution. Therefore, in
the Brazilian disc test, crack initiation and damage patterns are
used to determine whether an experiment is suitable for assessing
the mechanical properties of a material. For example, central
cracking is thought to be caused by tensile stresses and the
experiment is successful. Compared with experimental studies on
Brazilian disc tests, point load tests on rock spheres are fewer
because of the difficulty in fabricating spherical-shaped samples.

Paired point load experiments on spheres can be equated to
point loading experiments on irregular rock masses. Thus, this
study provides a reference for failure mode under point loads of
irregular rock masses to determine mechanical parameters. In
this study, the point load experiments on different sizes of
marble spheres were carried out, and the impact of sample size
on failure mode was evaluated. Based on the experimental re-
sults, the influence of size on contact angle and failure mode is
obtained. Meanwhile, the discrete element method-based (DEM-
based) software PFC3P was used to simulate the failure process of
rock spheres under point loads and the failure mode were
analyzed.

2. Analytical solution of stress distribution within an elastic
sphere under point loads

Assuming that an isotropic elastic sphere is subjected to a pair of
diametral point loads (Fig. 1), it is convenient to analyze the stress
distribution of any individual point represented in terms of (, 6, ¢)
in a polar spherical coordinate system, as shown in Fig. 2.

By omitting the body force of the solid sphere, the three stress
components satisfy the following equations (Chau and Wei, 1999):
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Fig. 1. (a) Polar spherical coordinate system used for stress analysis of a sphere under
(b) a pair of diametral point loads and stress components. r is the radial coordinate;
and 6 and ¢ are the polar and azimuthal angles, respectively.

a0’ 10t 4 1
_a;:r F ag +F(2(7n—70'|9070'¢+'[n9 cot 0) =0

6rr0 1 60"90 1 _ 1
or 7 ag T (0m —0p)coth+ 3] =0 M
Tyr 1079, 1 _

st et r(BTW, + 219, cot ) = 0

where o, is the stress in r-direction; gy is the stress in #-direction;
and 14, Tyr, Tr, and 1y, are the shear stress at each direction.

The stress boundary conditions of the sphere can be expressed
by (Wei and Chau, 2013):

(Or)r—a =P (Ogﬁsﬂo,n—ﬂosﬂsw)} 2)
(Urr)r:a =0 (190 <f<m-— 00)
Orp =0 =0 (r=a) (3)

where a is the radius of sphere, F is the peak load at the ends of the
sphere, and p is the stress given by the following function of the
peak load F and the contact angle 6y subtended at the center of the
sphere by the loaded area:

p= F/ [27ra2(1 — cos 00)] (4)

As illustrated in Fig. 2, 6y is the contact angle which can be
expressed as

Contact circle 270

»
1.

AAAAAAAAA

(a (b)

Fig. 2. Schematic diagrams of a rock sphere under a pair of diametral point loads: (a)
Front and (b) top views. rg is the radius of the contact circle.

fo = arcsin(rg /a) (5)

Then the stress p can be expressed as (Russell and Muir Wood,
2009):

F

The stress distribution inside the sphere subjected to a pair of
diametral point loads was given by Hiramatsu and Oka (1966) as
follows:
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Fig. 3. Influence of Poisson’s ratio on the normalized stress 2woa? /F distribution in-
side the sphere (fy = 1°, all stresses are normalized with F/(2ra?)).
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where n is a positive integer, A and u are the Lame’s constants of
rocks, and Pp(-) is the Legendre’s polynomial of the first kind. In
order to standardize the stress components, the dimensionless
normalized stress is introduced, which is defined as ¢/ p and can
also be written as 2moa? /F. According to Egs. 7—11, the distribu-
tions of normalized maximum and minimum principal stresses in
the central vertical cross-section along the loading direction are
shown for various contact angles and Poisson’s ratios in Figs. 3 and
4, respectively.

The contact angle and Poisson’s ratio affect the stress distribu-
tion, in particular tensile stress distribution, near the loading
points. With the increases in Poisson’s ratio and contact angle, the
maximum tensile stress reduces near the loading point at both
sides.

3. Diametral point loading experiment and analysis

In Section 2, the stress distribution obtained from analytical
solutions was presented. Based on the analytical results, Hiramatsu
and Oka (1966) proposed that one or two of the following failure
modes occur: (i) tension failure in the middle part due to the

]

Fig. 4. Influence of the contact angle f on the normalized stress 27ga? /F distribution
in the sphere (Poisson’s ratio = 0.2, all stresses are normalized with F/(2ma?)).
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angular stress at § = 0, (0gg9)s — o; (ii) crushing failure due to
compression radial and angular stress at § = 0, (grr)§ — o and
(a49)s = 0 near the loading points; and (iii) macroscopic shear failure
over the whole sample due to radial stress at § = 0, (¢,)s—o. Herein,
to evaluate the failure characteristics of rock spheres under paired
point loads, experiments on marble spheres in different diameters

will be presented in this section.

3.1. Sample preparation and experimental procedure

All the samples used in the experiment were taken from the
same block of marble with uniform texture and no obvious primary
defects. Before sample preparation, the basic mechanical parame-
ters of the rock were measured. The UCS value is around 110 MPa,
and the tensile strength obtained from Brazilian tests is 3.7 MPa.
The density, Poisson’s ratio and elastic modulus are 2635 kg/m?>, 0.2
and 9.5 GPa, respectively. Several cylindrical samples were first
drilled from the same marble block along the same sampling di-
rection, and then fabricated to the spherical shape by specified
carving equipment. The fabrication was controlled in a manner that
the blade moved around the samples to cut out the spherical shape,
while the samples remained fixed in terms of both displacement
and rotation. These samples were cut into spheres in the diameters
of 30—50 mm, with an interval of 5 mm.

In order to evaluate the sphericity of samples, the diameters of
the spherical samples were allowed to have errors in less than
0.2 mm in different directions. The mass of each spherical sample
was also measured after preparation, and compared with the
theoretical mass of ideal spheres in the same diameter, as shown in
Fig. 5. Therefore, the feasibility and credibility of this experiment
can be guaranteed due to the high sphericity.

The experiment was carried out on an MTS testing machine. The
loading rate was set as 0.04 mm/min, and a high-rigidity steel plate
loading block was used during the loading process. Each sample
was loaded in the sampling direction to reduce the error caused by
the anisotropy of the rock. Meanwhile, an extensometer was used
to measure the displacement of the sample in the loading direction.

3.2. Loading characteristics and failure modes

The geometric parameters and experimental results are shown
in Table 2. As shown in Table 2, the tensile strength obtained by Eq.
(12) of rock spheres is almost consistent with the tensile strength
obtained by Eq. (13) from Brazilian tests.

0.35 T T T T T T T

o3l Theoretical value
- O Measured value

0.25F b

02F Wl 4

Mass (kg)

0.05F o 1

N il 1 I | | I
12.5 15 1.5 20 22.5 25 po

Radius (mm)

Il 1

Fig. 5. Comparison between the measured and theoretical values of the mass of rock
spheres.
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Table 2
Experimental results of the point loading experiments.

Sample Ts Mass  Peak load Peak axial displacement St

No. (mm) (g) (kN) (mm) (MPa)
S30 15.03 40.2 3.6606 0.3627 3.646
S35 17.5 63.4 44679 0.3838 3.283
S40 19.57 88.1 5.2655 0.4096 3.093
S45 22.54 1402 64725 0.4473 2.866
S50 25.08 1863 8.8171 0.5224 3.154

Note: rs = (rx + Iy + 17)/3, in which ry is the radius in x-direction, ry is the radius in y-
direction, and r, is the radius in z-direction; and S; is the approximate tensile
strength calculated by Eq. (12).

Main crack

------- Secondary crack

Fig. 6. Images of spherical rock samples after point loading experiments: (a) Cracks on
the rock spheres, (b) Sketch of cracks on rock spheres, and (c) Samples splitting into
two pieces.

Se = 1.4F/(27ca2) (12)

ot = 2F/(mDt) (13)

where S; is the tensile strength obtain by paired point load, and o¢ is
the tensile strength obtain by Brazilian tests. The fracture patterns
of test samples are shown in Fig. 6. A group of main cracks are
formed to split the specimens into two pieces, and thus the spec-
imens lose their load-bearing capacity. Meanwhile, the fracture
plane is approximately flat with little debris, which is a typical
tensile failure characteristic. Moreover, a crushed zone containing
obvious microcracks is generated around the loading points.

These represent both the failure modes (i) and (ii). The crushed
zone is first formed due to large compressive stress (o) — o and
(o69)s — o near the loading points. Tensile stress (g4g)s—o distributes
at the edge of compressive stress concentrated area, which drives
the main crack to initiate and propagate along the radial direction
of the specimen, finally splitting the sample into two pieces.

9
—e—850 :
8 F ——8S45
4840
Tr —e—835 ! stage 111
6k ——s30]

Force (kN)
wn
T

4 - A
3 F stage [V
- stagell

2F \
1 |fstagel:

e : o
0 " L : 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5

Displacement (mm)

Fig. 7. Displacement-load curves for rock spheres in different diameters under a pair of
diametral point loads.

Fig. 8. SEM images of marble samples: (a) Slice of the specimen before failure, (b) Slice
of tensile failure zone, and (c) Slice of crushed zone. Red arrows indicate the debris
caused by each failure mode.
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Fig. 9. Relationship between the load and radius of contact circle under different
sample sizes.

Fig. 7 shows the load-displacement curve of each sample. As the
diameter of a sphere increases, the peak load and the axial
displacement increase. There are four stages (Stages I-IV) of the
load-displacement curve. At the Stage I, areas near the loading
points at both ends are compacted, and the contact area gradually
increases under stress which closes the microcracks. The contact
area changes from a point to a circular area. At this stage, no
macrocrack emerges on the sample. At the Stage II, rock within the
contact circle is crushed, producing a macrocrack that propagates
to the tip of the crushed zone, accompanied by gently increased
loading force. At the Stage I, tensile cracks begin to occur between
the center of the sample and crushed zones due to the increased
(a89)s—0, and the loading force continues to increase until the cracks
completely penetrate the sample. At the Stage IV, the sample loses
the load-bearing capacity and the loading force drops sharply.
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In order to further evaluate the microstructure damage of the
sample, the sample before and after failure was scanned using the
scanning electron microscope (SEM). Fig. 8a presents the original
intergranular structure of marble. The particle size is about 200 um,
and the bonding between the particles and the original gaps can be
clearly observed. Fig. 8b and c presents the breakage of bond be-
tween particles and the undulating fracture planes, which are
characterized by (b) tensile failure and (c) shear failure.

3.3. Contact angle 6y and crushed zone
According to the Hertzian contact theory (Timoshenko et al.,

1970), when two spheres are in contact under load F, the radius
of the contact circle can be obtained as

5 3RiR, (1 —n 1 _u§>F (14)

" T AR AR \ K K,

where R; and R; are the radii of each sphere; and vy, v,, K; and K,
are the elastic constants of the spheres. In this experiment, the
loading plate can be regarded to have Ry — + «, then Eq. (14) can

be written as
3R, [1—v2 1-—2
3 _ 2k 1 2
= < @ + 5 )F (15)

TO T

The relationship between the load and radius of contact circle
under different sample sizes is shown in Fig. 9. It can be seen that
with the increase of sample size under the same load condition, the
radius of contact circle increases which agrees well with the
experimental result. The contact angle can be written as

3 (1-1 1-73
flo = arccos 341!%<K1+ 5 F (16)

As loading proceeds during the experiment, the contact area
between the loading platen and the spherical sample expands into
a circle. It is obvious that rg increases with the increase of R, and F.
The geometric relationship between the deformation of the sphere

AAAAAAAAAAA

Length of
crushing zone d

Fig. 10. (a) Schematic diagram of rock axial deformation during loading, and (b) Im-
ages of a rock sphere showing the length of the crushed zone.

and the contact circle can be depicted in Fig. 2b. The contact angle
flo and contact radius rg are expressed by the deformation of the
sphere in the radial direction. In order to further evaluate the
relationship between the contact angle and the failure mode of the
sphere, the area of the crushed zone of each sample was measured,
as shown in Fig. 10b.

Assuming that the plastic deformation of the specimen prior to
damage is not taken into account, according to Fig. 10a, the contact
angle can be approximately expressed as

(17)

o = arccos (1 — O.5Ar>

where Ar is the radial deformation of the sample.

Substituting the measurement data in Table 2 into Eq. (16), the
contact angle g can be calculated. The relationships between the
radius (diameter), contact angle and peak load, ratio of the length of
the crushed zone in this experiment is shown in Fig. 11.

In Fig. 11a, with the increase in the radius of the sphere, the
contact angle increases, which is consistent with the Hertzian
contact theory. Moreover, as mentioned in Section 3.3, the peak
load increases with the radius, so does the contact angle. Fig. 10b
illustrates that the ratio of the crushed zone increases with the
increase of the diameter. The relationship between the ratio of
crushed areas, contact angle and peak load is shown in Fig. 11c. It is
indicated that the proportion of crushed areas increases with the
increase of the contact angle, manifesting the same trend at dam-
age points in Brazilian disc experiments based on the
Mohr—Coulomb (M — C) criterion and Hoek-Brown failure criterion
(Garcia-Fernandez et al., 2018). In addition, the peak load also in-
creases with the increase of contact angle, exhibiting consistency
with the result in Kourkoulis et al. (2013) on the contact problem in
standardized Brazilian disc tests. The experimental results show
that the crushed areas are distributed at (0.19—0.27)R at both ends
of the sphere, which is comparable to theoretical results where the
crushed zones are distributed between (0.14—0.2)R. This is because
rocks are considered isotropic in the theoretical calculations, but
rocks in the experiments exhibit anisotropy, and the crushed zone
of the sphere is larger than that in theoretical calculation due to the
end-friction effect.

3.4. Energy dissipation

The external work in the experiment was calculated by multi-
plying the applied load by the displacement. According to the load-
displacement curves obtained during the experiment, the work
applied to the samples can be calculated using the method pro-
posed by Mahanta et al. (2017). The strain-energy release rate is
defined as the energy dissipated per unit increase in an area during
crack growth (Griffith, 1920) and is represented by G. The work
done by the testing machine on each sample is shown in Fig. 12.

As shown in Fig. 12, the total work applied to rock spheres in-
creases greatly as the radius increases. The reason may be that with
the increase of the sample size, the value of the stress at the crack
tip becomes smaller. Then, more energy is consumed in crushed
zone at both ends.

The energy dissipations in each failure mode are different. The
total work applied to samples (E) can be summed up as

2
Erot = > AGi (18)
i—1

where i represents the number of failure modes; and A; and G; are
the fracture area and dissipated energy in each failure mode,
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respectively. The failure mode is distinguished by the different
types of damage surfaces on the specimens. Therefore, there are
five experimental dates and two undetermined variables. We can
solve the over-determined equation by the least squares method.
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The approximate solution of dissipated energy of each fracture can
be computed as G; = 0.000294 J/mm? and G, = 0.00865 J/mm?.
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As the energy required for these two failure modes is given, the
energy consumed in rock failure during the experiments can be
calculated. The ratios of the energy consumption in shear failure
(E2) and tensile failure (E7) are introduced as indicators for evalu-
ating the energy dissipation in the experiments.

As presented in Fig. 13, the radius is an important factor affecting
the energy distribution in the experiment. Both E; and E; increase
with the increase of the radius. The value of E; increases linearly,
whereas that of E, increases faster. E; always accounts for the
largest part of the total energy regardless of the sample size, as
shown in Fig. 13b. The ratio of E»/E; is always greater than 1, which
also agrees well with the experimental results, indicating that most
of the energy is consumed in forming crushed zones. In this situ-
ation, as the radius increases, the proportion of energy required in
creating crushed zones becomes higher. It can be concluded that
the larger the size of the sample, the more energy needed to form
crushed zones at both ends of samples.

4. Numerical simulation

The analytical solution of stress distribution within point loaded
spheres and experiments of paired point loading on marble spheres
are presented above. The failure mode of the specimen and the
displacement load curve show that failure modes (i) and (ii)

occurred in the experiment. However, the dynamic fracturing
process of the sample cannot be directly obtained during the
experiment. For this, the DEM-based software PFC3D was used to
model the dynamic failure characteristics of rock spheres under
point loads. The parallel bonding model was adopted to represent
the contact behavior between neighboring individual particles.
Before simulating paired point loading on rock spheres, the nu-
merical model was verified through uniaxial compression test to
ensure the accuracy of the simulation. The typical stress-strain
curve and failure mode of the specimen under uniaxial compres-
sion obtained by experiment and simulation are shown in Fig. 14a
and b. The numerical parameters are listed in Table 3. Moreover, the
failure models of sphere in laboratory experiment and numerical
simulation are shown in Fig. 14c and d.

As shown in Fig. 14, the results from discrete element simulation
are in good agreement with the experimental results. One primary
objective of the numerical simulation is to obtain the internal crack
development within rock spheres during the loading process. Thus,
only one model of rock sphere with a diameter of 50 mm was
constructed to analyze the crack development under point loads. In
simulation, the number of both shear and tensile cracks was
measured throughout the experimental process, as shown in
Fig. 15.

Fig. 15 shows the statistics of the number of tensile cracks (T-
crack) and shear cracks (S-crack) in the marble sphere during the
point loading process. In order to better evaluate the dominance of
the two types of cracks in the failure process, the ratio of T-crack
and S-crack (T/S-ratio) over time is also shown in Fig. 15. It can be
seen from that when the T/S-ratio is less than 1, the shear cracks
dominate the sample’s damage, which means that the crushed
areas at both ends are generated at the stage between points A and
C. After the curve passes the point C, tensile cracks appear, and thus
the stress distribution in the specimen switches from compressive
stress to tensile stress. Meanwhile, numerous tensile cracks grow
rapidly. By this time, the T/S-ratio starts to be greater than 1, and
the tensile cracks dominate fracturing of the sample until the
macroscopic failure occurs. Then, the cracks penetrate the entire
sample at point E, and there are plenty of secondary S-cracks
formed due to the friction between the rock sphere and loading
platens. At this stage, the extension of crack has terminated, and the
T/S-ratio begins to decrease, albeit it remains higher than 1.

In addition, the distribution of the transverse displacement in
the specimen at different stages was obtained in numerical simu-
lation as shown in Fig. 16. It can be clearly seen that the displace-
ment is distributed symmetrically along the loading axis until the
specimen fails. It can be seen in Fig. 15 that the displacement at
both sides of the loading point is greater than other positions due to
the end-friction effect. At the beginning of loading, the displace-
ments on both sides are distributed in opposite directions, and the
middle part of the specimen is subjected to tensile stress. As the
load increases, the compressive stresses at both ends increase,
which causes the specimen to break near the loading points at both
ends and produce a crushed zone. This process corresponds to the
stages A-C in Fig. 16 and Stage II in Fig. 7. Furthermore, after the
crushed zone is generated at both ends, macroscopic tensile cracks
are generated at the end of the crushed zone, which leads to the
overall failure of the sample and loss of bearing capacity.

5. Discussion

The diameter of the sphere directly affects the contact angle
between the loading plate and the sphere, and the contact angle
has a great influence on the stress distribution near the loading
points. As the failure of the specimen is dominated by the stress,
Garcia-Fernandez et al. (2018) used the truncated Mohr—Coulomb
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spherical samples in (c) numerical simulation, and (d) laboratory experiment.

(TMC) and Drucker-Prager criteria to determine the initial failure
point of the sample in the Brazilian disc. The result showed that the
failure of the Brazilian disc begins from the area between the center
and the loading point of the specimen, and the distance between
the initial failure point and the loading point increases with the
increase of the contact angle. Obtaining the initial crack point is
important for determining the damage of the specimen with tensile
or compressive stress, and further obtaining the relevant me-
chanical parameters of the rock. Therefore, considering ogp and o,
as the maximum and minimum principal stresses in this work, the
M — C and Griffith theories are used to analyze the initial failure
point and failure mode in the spherical specimen. When
ar = 3.7 MPa, the stress state calculated by Eqgs. (7) and (8) on the
principal stress plane of the spheres along the loaded diameter is
shown in Fig. 17. The M — C criterion is adopted to evaluate the
compressive-shear failure of materials, whilst the Griffith criterion
is widely applied to tensile failure. As shown in Fig. 17, according to
the M — C criterion, the increase in the diameter of specimen can be
equivalently considered to be an increase in the contact angle (see
Section 3.3). Therefore, the initial failure position gradually ap-
proaches the center of the sphere. Besides, failure initiates in a
region of about (0.8—0.86)R away from the center. When the
diameter of the sample is 50 mm, the initial failure of the sample is
tensile type. Based on the Griffith criterion, the initial failure of the
specimen is caused by compressive stress close to the loading
points and failure initiates in a region of about (0.92—0.97)R.
Moreover, the force-displacement curve (Fig. 7) obtained in the test
and the crack statistics (Fig. 15) in the numerical experiment indi-
cate that there is a crushed zone occurring firstly near the loading
point, followed by the tensile failure, which can be seen in the
numerical simulation. According to the Hertzian theory, under the

Table 3

Micro-parameters of PFC model.
Micro-parameter Value
Density 2700 kg/m?
Min-particle size 55 x 1074 m
Normal stiffness, kn 1 x 10% Pa
Shear stiffness, ks 5 x 107 Pa
Linear modulus, emod 2.12 x 10° Pa
Parallel-bond modulus, pb_emod 8.02 x 10° Pa
Ratio of normal to shear stiffness of the particle, kratio 2.6
Normal parallel-bond cohesion, pb_ten 5.16 x 107 Pa
Shear parallel-bond cohesion, pb_coh 4.3 x 107 Pa
Parallel-bond friction angle, pb-fa 45°

same loading conditions, as the radius increases, the contact angle
increases. Theoretically, the increase in contact angle leads to an
increased in the compressive stress concentrated areas in the
spherical specimen as shown in Fig. 4. Therefore, the energy con-
sumption of shear failure increases, so does the ratio of crushed
zone in the experiment. In point loading, the compressive stress
concentration near the loading point and the tensile stress below
the loading point can affect the failure mode of the specimen,
especially at small Poisson’s ratio and contact angle. These inho-
mogeneous stress distributions affect the accuracy of the experi-
mental results; however, the effects of these stresses cannot be
completely eliminated. A large/small contact angles will over-
estimate/underestimate the tensile strength of the rock in the point
load test. Thus, the impact of large tensile stress concentrations on
the rock strength can only be reduced by selecting a reasonable
contact angle.
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In study of Brazilian disc experiments, central cracking was used
as the available tensile strength judgment (Li et al., 2020). As point
load test, Franklin (1985) proposed typical modes of failure for valid
and invalid diametral and axial point load tests on cylindrical and
irregular sample. Regardless of the Brazilian discs test or point load
experiment adopted in the tension test, the contact angle has an
effect on the experimental results in terms of failure mode and load
characteristics. However, point load tests on rocks are sensitive to
the contact angle and Poisson’s ratio, and it is tedious to select
different contact angles for different Poisson’s ratios. Thus, it is not
recommended to use point load tests to obtain strength indices of
rocks (i.e. tensile strength) in projects that require highly-precise
strength parameters of rock masses. In addition, according to the
theoretical solution of the point load, the aspect ratio of the
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Fig. 16. Simulated horizontal displacement and crack distribution in the rock sphere (Increased number of cracks with increased loading time).
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specimen should also be considered when choosing the specimen.
It is best to choose a specimen with an aspect ratio close to 1:1.

6. Conclusions

Through theoretical calculations and experiments, the stress
distribution and failure characteristics of spherical samples under
paired point loads were obtained. The DEM-based software PFC3D
was used to simulate the internal failure process of the sample. The
following conclusions can be drawn:

(1) The rock sphere is broken into two pieces under point load,
accompanied by crushed areas at the ends of the loading and
numerous tensile sections in the interior, which can be used
as a reference for the rock failure under point loads, and is
important for evaluating point load indicators.

(2) The influence of the sample size on the damage of the sample
is mainly reflected by the contact angle between samples and
the loading platen, which affects the stress distribution and
compressive stress concentrated area near the loading point
and leads to the different failure modes.

(3) As the sample size increases, the contact angle increases. The
boundary point between tensile and compression failure
approaches the center of the sphere.
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