16,285 research outputs found

    A breakdown voltage model for implanted resurf p-LDMOS device on n+ buried layer

    Get PDF
    This paper presents an analytical expression of the breakdown voltage of a high voltage implanted RESURF p-LDMOS device which uses the n+ buried layer as an effective device substrate. In this model, the doping profile of the buried layer is considered and discussed. The implant dose for the drift region to implement the RESURF principle is also described by this model. Results calculated from this model are verified by experimental values

    Unitary Linear Dispersion Code Design and Optimisation for MIMO Communication Systems

    No full text
    Linear Dispersion Codes (LDCs) have recently attracted numerous research interests. Thanks to their efficient spreading of data across both the time and spatial domains, LDCs are capable of achieving a desired Diversity-Multiplexing Trade-off (DMT) in Multiple Input Multiple Output (MIMO) broadband wireless access systems. This paper proposes a novel LDC design method, which relies on the unitary matrix theory combined with a Genetic Algorithm (GA) aided optimisation procedure. The proposed design provides a flexible framework, where new LDCs attaining higher data rates and better error resilience than a number of classic MIMO schemes can be generated. Index Terms Diversity-multiplexing trade-off, genetic algorithm, multiple-input multiple-output, linear dispersion code

    Holographic complexity of the electromagnetic black hole

    Full text link
    In this paper, we use the "complexity equals action" (CA) conjecture to evaluate the holographic complexity in some multiple-horzion black holes for F(Riemann) gravity coupled to a first-order source-free electrodynamics. Motivated by the vanishing result of the purely magnetic black hole founded by Goto et.alet.\, al, we investigate the complexity in a static charged black hole with source-free electrodynamics and find that this vanishing feature of the late-time rate is universal for a purely static magnetic black hole. However, this result shows some unexpected features of the late-time growth rate. We show how the inclusion of a boundary term for the first-order electromagnetic field to the total action can make the holographic complexity be well-defined and obtain a general expression of the late-time complexity growth rate with these boundary terms. We apply our late-time result to some explicit cases and show how to choose the proportional constant of these additional boundary terms to make the complexity be well-defined in the zero-charge limit. For the static magnetic black hole in Einstein gravity coupled to a first-order electrodynamics, we find that there is a general relationship between the proper proportional constant and the Lagrangian function h(\math{F}) of the electromagnetic field: if h(\math{F}) is a convergent function, the choice of the proportional constant is independent on explicit expressions of h(\math{F}) and it should be chosen as 4/34/3; if h(\math{F}) is a divergent function, the proportional constant is dependent on the asymptotic index of the Lagrangian function.Comment: 27 pages, 1 figure, some examples and references adde

    Tetramethylpyrazine protects Schwann cells from ischemia-like injury and increases cell survival in cold ischemic rat nerves

    Get PDF
    Tetrametilpirazina (TMP), o principal componente do extrato de Ligusticum wallichi Franchat (erva chinesa), apresenta propriedades neuroprotetoras na isquemia. Nesse estudo, avaliamos seus efeitos protetores nas células de Schwann (SC), cultivando-as na presença de condições de depleção de oxigênio da glicose (OGD) e medindo a sobrevivência dos nervos de ratos isquêmicos pelo resfriamento. No modelo de lesão isquêmica em SC induzida por OGD, demonstramos que o tratamento com TMP não somente reduziu as perdas de viabilidade celular induzida por OGD, a morte celular, a apoptose de SC dose-dependente e inibiu a liberação de LDH, mas, também, suprimiu a infra-regulação do Vcl-2 e a supra-regulação de Bax e caspase-3, e inibiu a consequente ativação da caspase-3. No modelo de nervo isquêmico por resfriamento, observamos que a exposição prolongada ao resfriamento por quatro semanas estava, marcadamente, associada com a ausência de SC, com o decréscimo da viabilidade celular e a apoptose em segmentos de nervo incubados na solução da Universidade de Wisconsin apenas. Entretanto, a TMP atenuou o dano no segmento do nervo preservando SC e antagonizando a diminuição da viabilidade da fibra nervosa e o aumento das células TUNEL-positiva de modo dose-dependente. De forma conjunta, nossos resultados indicam que o TMP não só fornece efeitos protetores em um modelo de dano semelhante à isquemia de SC de ratos cultivados pela regulação de BCl-2, Bax e caspase 3, mas, também, aumenta a sobrevivência celular e suprime a apoptose no modelo de isquemia por resfriamento por exposição prolongada por quatro semanas. Então, TMP pode ser uma estratégia terapêutica eficaz para prevenir doenças isquêmicas do sistema nervoso periférico e melhora a armazenagem do nervo periférico.Tetramethylpyrazine (TMP), a major active ingredient of Ligusticum wallichi Franchat extract (a Chinese herb), exhibits neuroprotective properties in ischemia. In this study, we assessed its protective effects on Schwann cells (SCs) by culturing them in the presence of oxygen glucose deprivation (OGD) conditions and measuring cell survival in cold ischemic rat nerves. In the OGD-induced ischemic injury model of SCs, we demonstrated that TMP treatment not only reduced OGD-induced cell viability losses, cell death, and apoptosis of SCs in a dose-dependent manner, and inhibited LDH release, but also suppressed OGD-induced downregulation of Bcl-2 and upregulation of Bax and caspase-3, as well as inhibited the consequent activation of caspase-3. In the cold ischemic nerve model, we found that prolonged cold ischemic exposure for four weeks was markedly associated with the absence of SCs, a decrease in cell viability, and apoptosis in preserved nerve segments incubated in University of Wisconsin solution (UWS) alone. However, TMP attenuated nerve segment damage by preserving SCs and antagonizing the decrease in nerve fiber viability and increase in TUNEL-positive cells in a dose-dependent manner. Collectively, our results indicate that TMP not only provides protective effects in an ischemia-like injury model of cultured rat SCs by regulating Bcl-2, Bax, and caspase-3, but also increases cell survival and suppresses apoptosis in the cold ischemic nerve model after prolonged ischemic exposure for four weeks. Therefore, TMP may be a novel and effective therapeutic strategy for preventing peripheral nervous system ischemic diseases and improving peripheral nerve storage
    corecore