128 research outputs found

    Mithramycin forms a stable dimeric complex by chelating with Fe(II): DNA-interacting characteristics, cellular permeation and cytotoxicity

    Get PDF
    Mith (mithramycin) forms a 2:1 stoichiometry drug–metal complex through the chelation with Fe(II) ion as studied using circular dichroism spectroscopy. The binding affinity between Mith and Fe(II) is much greater than other divalent metal ions, including Mg(II), Zn(II), Co(II), Ni(II) and Mn(II). The [(Mith)(2)–Fe(II)] complex binds to DNA and induces a conformational change of DNA. Kinetic analysis of surface plasmon resonance studies revealed that the [(Mith)(2)–Fe(II)] complex binds to DNA duplex with higher affinity compared with the [(Mith)(2)–Mg(II)] complex. A molecular model of the Mith-DNA–Metal(II) complex is presented. DNA-break assay showed that the [(Mith)(2)–Fe(II)] complex was capable of promoting the one-strand cleavage of plasmid DNA in the presence of hydrogen peroxide. Intracellular Fe(II) assays and fluorescence microscopy studies using K562 indicated that this dimer complex maintains its structural integrity and permeates into the inside of K562 cells, respectively. The [(Mith)(2)–Fe(II)] complex exhibited higher cytotoxicity than the drug alone in some cancer cell lines, probably related to its higher DNA-binding and cleavage activity. Evidences obtained in this study suggest that the biological effects caused by the [(Mith)(2)–Fe(II)] complex may be further explored in the future

    The structural basis of actinomycin D–bindinginduces nucleotide flipping out, a sharp bendand a left-handed twist in CGG triplet repeats

    Get PDF
    The potent anticancer drug actinomycin D (ActD)functions by intercalating into DNA at GpC sites,thereby interrupting essential biological processesincluding replication and transcription. Certainneurological diseases are correlated with the expansionof (CGG)n trinucleotide sequences, whichcontain many contiguous GpC sites separated by asingle G:G mispair. To characterize the binding ofActD to CGG triplet repeat sequences, the structuralbasis for the strong binding of ActD to neighbouringGpC sites flanking a G:G mismatch has beendetermined based on the crystal structure of ActDbound to ATGCGGCAT, which contains a CGGtriplet sequence. The binding of ActD molecules toGCGGC causes many unexpected conformationalchanges including nucleotide flipping out, a sharpbend and a left-handed twist in the DNA helix via atwo site-binding model. Heat denaturation, circulardichroism and surface plasmon resonance analysesshowed that adjacent GpC sequences flanking aG:G mismatch are preferred ActD-binding sites. Inaddition, ActD was shown to bind the hairpin conformationof (CGG)16 in a pairwise combination andwith greater stability than that of other DNAintercalators. Our results provide evidence of apossible biological consequence of ActD bindingto CGG triplet repeat sequences

    Structural basis for the identification of the N-terminal domain of coronavirus nucleocapsid protein as an antiviral target

    Get PDF
    Coronaviruses (CoVs) cause numerous diseases, including Middle East respiratory syndrome and severe acute respiratory syndrome, generating significant health-related and economic consequences. CoVs encode the nucleocapsid (N) protein, a major structural protein that plays multiple roles in the virus replication cycle and forms a ribonucleoprotein complex with the viral RNA through the N protein's N-terminal domain (N-NTD). Using human CoV-OC43 (HCoV-OC43) as a model for CoV, we present the 3D structure of HCoV-OC43 N-NTD complexed with ribonucleoside 5'-monophosphates to identify a distinct ribonucleotide-binding pocket. By targeting this pocket, we identified and developed a new coronavirus N protein inhibitor, N-(6-oxo-5,6-dihydrophenanthridin-2-yl)(N,N-dimethylamino)acetamide hydrochloride (PJ34), using virtual screening; this inhibitor reduced the N protein's RNA-binding affinity and hindered viral replication. We also determined the crystal structure of the N-NTD-PJ34 complex. On the basis of these findings, we propose guidelines for developing new N protein-based antiviral agents that target CoVs

    Staggered intercalation of DNA duplexes with base-pair modulation by two distinct drug molecules induces asymmetric backbone twisting and structure polymorphism

    Get PDF
    The use of multiple drugs simultaneously targeting DNA is a promising strategy in cancer therapy for potentially overcoming single drug resistance. In support of this concept, we report that a combination of actinomycin D (ActD) and echinomycin (Echi), can interact in novel ways with native and mismatched DNA sequences, distinct from the structural effects produced by either drug alone. Changes in the former with GpC and CpG steps separated by a A:G or G:A mismatch or in a native DNA with canonical G:C and C:G base pairs, result in significant asymmetric backbone twists through staggered intercalation and base pair modulations. A wobble or Watson-Crick base pair at the two drug-binding interfaces can result in a single-stranded 'chair-shaped' DNA duplex with a straight helical axis. However, a novel sugar-edged hydrogen bonding geometry in the G:A mismatch leads to a 'curved-shaped' duplex. Two non-canonical G:C Hoogsteen base pairings produce a sharply kinked duplex in different forms and a four-way junction-like superstructure, respectively. Therefore, single base pair modulations on the two drug-binding interfaces could significantly affect global DNA structure. These structures thus provide a rationale for atypical DNA recognition via multiple DNA intercalators and a structural basis for the drugs' potential synergetic use

    Synergistic binding of actinomycin D and echinomycin to DNA mismatch sites and their combined anti-tumour effects

    Get PDF
    Combination cancer chemotherapy is one of the most useful treatment methods to achieve a synergistic effect and reduce the toxicity of dosing with a single drug. Here, we use a combination of two well-established anticancer DNA intercalators, actinomycin D (ActD) and echinomycin (Echi), to screen their binding capabilities with DNA duplexes containing different mismatches embedded within Watson-Crick base-pairs. We have found that combining ActD and Echi preferentially stabilised thymine-related T:T mismatches. The enhanced stability of the DNA duplex-drug complexes is mainly due to the cooperative binding of the two drugs to the mismatch duplex, with many stacking interactions between the two different drug molecules. Since the repair of thymine-related mismatches is less efficient in mismatch repair (MMR)-deficient cancer cells, we have also demonstrated that the combination of ActD and Echi exhibits enhanced synergistic effects against MMR-deficient HCT116 cells and synergy is maintained in a MMR-related MLH1 gene knockdown in SW620 cells. We further accessed the clinical potential of the two-drug combination approach with a xenograft mouse model of a colorectal MMR-deficient cancer, which has resulted in a significant synergistic anti-tumour effect. The current study provides a novel approach for the development of combination chemotherapy for the treatment of cancers related to DNA-mismatches

    Multidisciplinary Prehabilitation To Improve Frailty and Functional Capacity in High-Risk Elective Surgical Patients: A Retrospective Pilot Study

    Get PDF
    BACKGROUND: Frailty is associated with worse outcomes and higher healthcare costs. The long waiting time for surgery is a potential \u27teachable\u27 moment. We examined the feasibility and safety of a pilot prehabilitation programme on high-risk frail patients undergoing major elective surgery. METHODS: A single-centre, retrospective pilot study (Dec 2020-Nov 2021) on a one-stop prehabilitation programme (structured exercise training, nutritional counselling/therapy, and psychological support) in collaboration with geriatricians and allied health professionals. At least 4 weeks before surgery, patients at high risk of frailty or malnutrition, or undergoing major hepatectomy, esophagectomy, pancreaticoduodenectomy, or radical cystectomy, were referred for prehabilitation (2-3 sessions/week). The primary outcomes were the feasibility and safety of prehabilitation. The secondary outcomes were changes in functional, emotional, and nutritional status and days alive and at home within 30 days after surgery (DAH RESULTS: Over a 12-month period, 72 out of 111 patients (64.9%) from the Perioperative Medicine Clinic were eligible for prehabilitation, of which 54 (75%) were recruited. The mean (standard deviation) age was 71.9 (6.9) years. The adherence rate to 3 weeks of prehabilitation was high in 52 (96.3%) participants. Prehabilitation improved exercise capacity (P = 0.08), enhanced some functional mobility measures (P = 0.02), and increased nutritional energy (P = 0.04) and protein intakes (P \u3c 0.01). However, prehabilitation-related changes in muscle strength, cognitive function, and emotional resilience were minimal. The median (interquatile range) DAH CONCLUSIONS: This outpatient-based, one-stop multidisciplinary prehabilitation programme was feasible, safe, and improved several measures of patient\u27s physiological reserve and functional capacity

    Structural basis of water-mediated cis Watson–Crick/Hoogsteen base-pair formation in non-CpG methylation

    Get PDF
    Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson–Crick/Hoogsteen, (w)cWH, and Watson–Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation

    Conformational Changes in DNA upon Ligand Binding Monitored by Circular Dichroism

    Get PDF
    Circular dichroism (CD) spectroscopy is an optical technique that measures the difference in the absorption of left and right circularly polarized light. This technique has been widely employed in the studies of nucleic acids structures and the use of it to monitor conformational polymorphism of DNA has grown tremendously in the past few decades. DNA may undergo conformational changes to B-form, A-form, Z-form, quadruplexes, triplexes and other structures as a result of the binding process to different compounds. Here we review the recent CD spectroscopic studies of the induction of DNA conformational changes by different ligands, which includes metal derivative complex of aureolic family drugs, actinomycin D, neomycin, cisplatin, and polyamine. It is clear that CD spectroscopy is extremely sensitive and relatively inexpensive, as compared with other techniques. These studies show that CD spectroscopy is a powerful technique to monitor DNA conformational changes resulting from drug binding and also shows its potential to be a drug-screening platform in the future

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore