113 research outputs found

    The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model

    Get PDF
    In this study, we evaluate the ability of the latest NASA GISS composition-climate model, GISS-E2-PUCCINI, to simulate the spatial distribution of snow BC (sBC) in the Arctic relative to present-day observations. Radiative forcing due to BC deposition onto Arctic snow and sea ice is also estimated. Two sets of model simulations are analyzed, where meteorology is linearly relaxed towards National Centers for Environmental Prediction (NCEP) and towards NASA Modern Era Reanalysis for Research and Applications (MERRA) reanalyses. Results indicate that the modeled concentrations of sBC are comparable with present-day observations in and around the Arctic Ocean, except for apparent underestimation at a few sites in the Russian Arctic. That said, the model has some biases in its simulated spatial distribution of BC deposition to the Arctic. The simulations from the two model runs are roughly equal, indicating that discrepancies between model and observations come from other sources. Underestimation of biomass burning emissions in Northern Eurasia may be the main cause of the low biases in the Russian Arctic. Comparisons of modeled aerosol BC (aBC) with long-term surface observations at Barrow, Alert, Zeppelin and Nord stations show significant underestimation in winter and spring concentrations in the Arctic (most significant in Alaska), although the simulated seasonality of aBC has been greatly improved relative to earlier model versions. This is consistent with simulated biases in vertical profiles of aBC, with underestimation in the lower and middle troposphere but overestimation in the upper troposphere and lower stratosphere, suggesting that the wet removal processes in the current model may be too weak or that vertical transport is too rapid, although the simulated BC lifetime seems reasonable. The combination of observations and modeling provides a comprehensive distribution of sBC over the Arctic. On the basis of this distribution, we estimate the decrease in snow and sea ice albedo and the resulting radiative forcing. We suggest that the albedo reduction due to BC deposition presents significant space-time variations, with highest mean reductions of 1.25% in the Russian Arctic, which are much larger than those in other Arctic regions (0.39% to 0.64%). The averaged value over the Arctic north of 66° N is 0.4–0.6% during spring, leading to regional surface radiative forcings of 0.7, 1.1 and 1.0 W m<sup>−2</sup> in spring 2007, 2008 and 2009, respectively

    MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition

    Get PDF
    SummaryThe histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression

    The Multipartite Mitochondrial Genome of Liposcelis bostrychophila: Insights into the Evolution of Mitochondrial Genomes in Bilateral Animals

    Get PDF
    Booklice (order Psocoptera) in the genus Liposcelis are major pests to stored grains worldwide and are closely related to parasitic lice (order Phthiraptera). We sequenced the mitochondrial (mt) genome of Liposcelis bostrychophila and found that the typical single mt chromosome of bilateral animals has fragmented into and been replaced by two medium-sized chromosomes in this booklouse; each of these chromosomes has about half of the genes of the typical mt chromosome of bilateral animals. These mt chromosomes are 8,530 bp (mt chromosome I) and 7,933 bp (mt chromosome II) in size. Intriguingly, mt chromosome I is twice as abundant as chromosome II. It appears that the selection pressure for compact mt genomes in bilateral animals favors small mt chromosomes when small mt chromosomes co-exist with the typical large mt chromosomes. Thus, small mt chromosomes may have selective advantages over large mt chromosomes in bilateral animals. Phylogenetic analyses of mt genome sequences of Psocodea (i.e. Psocoptera plus Phthiraptera) indicate that: 1) the order Psocoptera (booklice and barklice) is paraphyletic; and 2) the order Phthiraptera (the parasitic lice) is monophyletic. Within parasitic lice, however, the suborder Ischnocera is paraphyletic; this differs from the traditional view that each suborder of parasitic lice is monophyletic

    The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of <it>Panonychus citri </it>(Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari.</p> <p>Results</p> <p>The mitochondrial genome of <it>P. citri </it>is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for <it>P. citri </it>is the same as those for <it>P. ulmi </it>and <it>Tetranychus urticae</it>, but distinctly different from other Acari by a series of gene translocations and/or inversions. The majority of the <it>P. citri </it>mitochondrial genome has a high A + T content (85.28%), which is also reflected by AT-rich codons being used more frequently, but exhibits a positive GC-skew (0.03). The Acari mitochondrial <it>nad1 </it>exhibits a faster amino acid substitution rate than other genes, and the variation of nucleotide substitution patterns of PCGs is significantly correlated with the G + C content. Most tRNA genes of <it>P. citri </it>are extremely truncated and atypical (44-65, 54.1 ± 4.1 bp), lacking either the T- or D-arm, as found in <it>P. ulmi</it>, <it>T. urticae</it>, and other Acariform mites.</p> <p>Conclusions</p> <p>The <it>P. citri </it>mitochondrial gene order is markedly different from those of other chelicerates, but is conserved within the family Tetranychidae indicating that high rearrangements have occurred after Tetranychidae diverged from other Acari. Comparative analyses suggest that the genome size, gene order, gene content, codon usage, and base composition are strongly variable among Acari mitochondrial genomes. While extremely small and unusual tRNA genes seem to be common for Acariform mites, further experimental evidence is needed.</p

    Modulators of axonal growth and guidance at the brain midline with special reference to glial heparan sulfate proteoglycans

    Full text link

    Analysis of the Influence of Contact Position to the ESD Protection Ability in Ggnmos Device

    No full text
    For the silicided GGnMOS as ESD protection device, the current localization in the n+ diffusion duo to the short contact spacing often degrades the ESD performance of the device. By enlarging the contact spacing, ballasting resistance is introduced to allow a more uniform current distribution. How the drain contact to gate spacing and contact to contact spacing influencing the ESD performance of the GGnMOS is investigated. We find that lengthening the contact to contact spacing can significantly improve the ESD performance of silicided GGnMOS. ? 2011 Springer-Verlag.EI

    INTERNATIONAL JOURNAL OF AGRICULTURE &amp; BIOLOGY Full Length Article Assessment of Genetic Relationship and Diversity among Chinese Sugarcane Parental Clones using SCoT and ISSR Markers

    No full text
    Abstract Sugarcane is an allopolyploid crop with ≥120 or more chromosomes, of which~5.0-10% are Saccharum spontaneum and 90-95% are S. officinarum. The genetic characteristics of sugarcane provides a complex genetic background. The objective of this study was to use two molecular marker systems, start codon targeted (SCoT) and inter-simple sequence repeat (ISSR), to assess the genetic relationship and diversity of 75 sugarcane parental clones from Chinese sugarcane breeding program. Twenty-four SCoT primers produced 227 loci, of which 200 (88.11%) were polymorphic, whereas 15 ISSR primers resulted in a total of 146 loci, with 123 (84.25%) being polymorphic. Mean polymorphism information content values of 0.8152 and 0.8361 were detected using SCoT and ISSR primers, respectively. The genetic similarity coefficients ranged from 0.542 between ROC22 and HoCP95-988 to 0.831 between ROC25 and ROC20, with a mean value of 0.687 based on SCoT+ISSR data set. The unweighted pair group method of arithmetic averages (UPGMA) clusters and principal coordinate analysis (PCA) gave similar results. The 75 Chinese sugarcane parental clones were clustered into two main groups (A and B). Group A was primarily comprised of 42 clones from all Q-series, all CP-, HoCP-, or LCP-series, all YT-series and three Erianthus arundinaceus F4 innovative parental clones, etc., while 33 parental clones of Group B contained all TT-series, all GT-series, three Saccharum officinarum species, etc. The genetic similarity was high among the Q-series, CP-series, HoCP-series and YT-series. The genetic relationship was close among TT-series, GT-series and three S. officinarum species, while the genetic similarity between YT-series and TT-series or GT-series was low. There was an abundant genetic diversity among these sugarcane parental clones however the parental clones bred by the same breeding organization have a narrow genetic basis. This information was useful for selecting crossing parents and combinations. Correlation detection between SCoT and ISSR was not significant, but highly complementary, indicating that the combination of the two marker systems could avoid biases based on a single marker
    corecore