53 research outputs found

    Atmospheric removal of methane by enhancing the natural hydroxyl radical sink

    Get PDF
    According to the latest report from the Intergovernmental Panel on Climate Change (IPCC), currently, global warming due to methane (CH4) alone is about 0.5°C while due to carbon dioxide (CO2) alone is about 0.75°C. As CH4 emissions will continue growing, in order to limit warming to 1.5˚C, some of the most effective strategies are rapidly reducing CH4 emissions and developing large scale CH4 removal methods. The aim of this review article is to summarise and propose possible methods for atmospheric CH4 removal, based on the hydroxyl radical (°OH), which is the principal natural sink of many gases in the atmosphere and on many water surfaces. Inspired by mechanisms of °OH generation in the atmosphere and observed or predicted enhancement of °OH by climate change and human activities, we proposed several methods to enhance the °OH sink by some physical means using water vapour and artificial UV radiation

    Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model

    Get PDF
    The urban heat island (UHI) effect resulted from urbanization as well as industrialization has become a major environmental problem. UHI effect aggravates global warming and endangers human health. Thus, mitigating the UHI effect has become a primary task to address these challenges. This paper verifies the feasibility of a three-dimensional turbulent porous media model. Using this model, the authors simulate the urban canopy wind-heat environment. The temperature and flow field over a city with a concentric circular structure are presented. The impact of three factors (i.e., anthropogenic heat, ambient crosswind speed, and porosity in the central area) on turbulent flow and heat transfer in the central business district of a simplified city model with a concentric circular structure were analyzed. It is found that the three-dimensional turbulent porous media model is suitable for estimating the UHI effect. The UHI effect could be mitigated by reducing the artificial heat and improving the porosity of the central city area
    corecore