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Abstract: The urban heat island (UHI) effect resulted from urbanization as well as industrialization 
has become a major environmental problem. UHI effect aggravates global warming and endangers 
human health. Thus, mitigating the UHI effect has become a primary task to address these challenges. 
This paper verifes the feasibility of a three-dimensional turbulent porous media model. Using this 
model, the authors simulate the urban canopy wind-heat environment. The temperature and fow 
feld over a city with a concentric circular structure are presented. The impact of three factors (i.e., 
anthropogenic heat, ambient crosswind speed, and porosity in the central area) on turbulent fow 
and heat transfer in the central business district of a simplifed city model with a concentric circular 
structure were analyzed. It is found that the three-dimensional turbulent porous media model is 
suitable for estimating the UHI effect. The UHI effect could be mitigated by reducing the artifcial 
heat and improving the porosity of the central city area. 

Keywords: porous media; heat island effect; wind feld; CFD simulation 

1. Introduction 

With global urbanization increasing, the rapid change in the structure of modern 
cities (e.g., high-density buildings) and human activities’ increasing (e.g., heavy urban 
traffc) have made urban heat islands (UHI) more and more serious. [1]. The UHI intensity 
can increase rapidly with the city size and a maximum intensity of 12 K was observed 
in Lodz (Poland) and Mexico City (Mexico) [2]. Environmental problems in cities (i.e., 
reduced diffusion capacity of waste heat and pollution) have become the primary concern 
for city dwellers. 

Manley frst proposed the concept of the UHI in 1958 [3]. Currently, it has been 
generally accepted that UHI is a climatic phenomenon with higher temperature in towns 
and lower temperature in suburbs. Since the concept was proposed, many scholars have 
investigated UHI phenomena using feld measurement methods, such as meteorological 
data and fxed-point, mobile, and infrared thermal measurements. Mathew and Kaul [4] 
analyzed the surface temperature data of the Chandigarh study area from 2009 to 2013 
and found that a signifcant surface heat island phenomenon existed in the area. The UHI 
intensity of the targeted area changed with the seasons. Huang et al. [5] selected four 
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types of land cover for microclimate research in Nanjing and analyzed the characteristics 
of the Nanjing heat island using temperature data from four fxed observation points. 
Sun et al. [6] conducted both mobile observations and fxed-point measurements to inves-
tigate the UHI effect. Sabiha and Satyanarayana [7] quantifed the spatial relationships 
among the land occupations, planting and ground temperatures of 10 major metropolitan 
cities in India using satellite remote sensing and messaging systems. It was diffcult to 
describe the spatial structure of UHIs with limited data obtained from feld measurements. 
Singhe et al. [8] analyzed the data collected by satellites to study land occupation, planting 
and land temperature and their impact on surface temperature. The results show that 
urbanization has a greater impact on the distribution of surface temperature with comput-
ing power improving, an increasing number of studies have been published investigating 
urban climate issues using numerical simulations and mesoscale and microscale climate 
models [9]. Khan and Simpson [10] established a mesoscale model to study the UHI 
effect in Brisbane using local meteorological data. The results showed that additional heat 
sources affected the temperature feld of the city during breezes. Atkinson [11] established 
a three-dimensional numerical model of the UHI in London and analyzed various factors 
affecting the UHI. Takahashi et al. [12] measured the temperatures of commercial buildings, 
university campuses, plaza buildings, and street surfaces in Tokyo in the summer of 2002 
and established a prediction model. The results showed that the model could predict the 
urban thermal environment. Yushkov et al. [13] applied the mesoscale weather research 
and forecasting (WRF) model to describe the mixing process of the atmospheric boundary 
layer in detail and concluded that the model could only capture the main features of UHIs. 
Vitanova and Kusaka [14] investigated the characteristics of UHI and found that the degree 
of urbanization’s intensifcation impacted urban temperature distribution Mirzaei and 
Haghighat [9] reviewed the mathematical models for the study of UHIs. They found that 
the methods for the modeling of UHI were not sound. Mesoscale models were typically 
used in computational fuid dynamics (CFD) simulations to describe urban heat conduction. 
However, they had low horizontal accuracy, usually within the range of several kilometers. 
It was also diffcult to describe the aerodynamic characteristics and thermal effects in 
the urban canopy. In contrast, microscale models could accurately depict the geometric 
features and architectural details of a city. However, it was extremely challenging to apply 
a microscale model to an entire city. Computational grids were not suffcient to model 
the building sizes, and the existing computing power cannot handle a large number of 
computational grids required for city-scale CFD simulations. Hang and Li [15] pointed out 
that the minimum grid resolution should be 10% of the building scale to simulate urban 
areas using the Reynolds-averaged Navier–Stokes (RANS) turbulence model. Thousands 
of buildings in urban require billions of grids, which cannot be handled by conventional 
CFD models. 

Porous medium is defned as the material composed of solid substance and small 
gaps separated by a large number of densely spaced pores. Porous media can be divided 
into primary porous media and secondary porous media. Building materials such as bricks 
and wood are secondary porous media. It was observed that the urban spatial structure 
and porous media were very similar in terms of the topological structure. Therefore, cities 
are secondary porous media. Therefore, Hang and Li [15] approximated the urban space as 
a porous medium consisting of solid buildings and the spaces between the buildings and 
the used volume averaging. Although some micro-information in the simulated urban area 
was ignored in volume averaging, it could still simulate the impact of building clusters on 
urban airfow accurately. The Darcy term (Darcy Law means the groundwater movement 
throughout pores and fractures. This refers to the resistance of airfow in the pores), 
Forchheimer term, and Brinkman term in the momentum equation were used to describe 
the drag force generated by the buildings and the underlying surface. The application of 
an urban porous media model can signifcantly simplify the numerical model, facilitating 
urban-scale modeling. 



Energies 2021, 14, 4681 3 of 23 

Parker et al. earlier proposed a porous media parameter model. [16]. Since then, 
many scholars have performed macroscale fow experiments and numerical simulations 
of porous media [17–19]. Some researchers have conducted in-depth analyses of the 
mathematical equations of fow in porous media as well as proposed various modifcations 
of Darcy’s law according to the physical properties of fow [20]. Whitaker et al. [21] 
derived the Forchheimer correction of Darcy’s law for uniform porous method adopting 
the volume averaging technology. The macro turbulence method based on porous media 
was continuously improved in the literature. Antohe and Lage [22] established and derived 
a two-equation turbulence model of incompressible fow in saturated rigid porous media. 
Subsequently, several researchers modifed this model to study the airfow in an urban 
canopy. Brown and Decroix [23] conducted a wind tunnel experiment on a set of cube 
buildings, providing data for subsequent CFD simulation validation. Lien et al. [24] 
conducted detailed microscale numerical simulations of airfow in comparable cube arrays. 
Meanwhile, they carried out a macroscale simulation with an improved turbulence model 
to study the macroscale dynamics of airfow in the cubic array with porous properties. 
Hang and Li [15] proposed for the frst time that a city could be treated to be porous. The 
revised porous media model was adopted by Antohe and Lage [22] to study the macroscale 
fows in the city. These studies provide theoretical guidance and methodological references 
for our work. Hu et al. [25] derived an urban porous method to investigate the urban airfow 
and UHI phenomenon. Hang and Li [26] adopted the porous method to study spatially 
averaged macro wind conditions of urban high-rise areas. Wang et al. [27] proposed a 
hybrid model that considered some buildings in the city as a porous medium, whereas the 
target buildings had full resolution. They applied the revised porous turbulence model 
developed by Hang and Li [15] to simulate the entire city. The scale of the modeling domain 
was expanded without missing the important characteristics of airfow in the studied area, 
and the computing power was proven suffcient. Wang and Li [28] proposed a multiscale 
CFD model suitable for urban airfow prediction. The authors used the porous method 
to simulate the urban boundary layer and successfully applied the model to study urban 
heat island circulation (UHIC), which is considered a challenging issue in CFD. This study 
laid the foundation for our study of the UHI within a city. Yang et al. [29] treated plants 
as porous media to simulate the infuence of vegetation on the fow feld and pollutants 
in 2D urban street canyons. Fan et al. [30] used the existing porous turbulence model 
to simulate the urban canopy and studied the formation mechanism of buoyancy and 
turbulence-driven atmospheric circulation (BTDAC) with low-level infow and reverse 
divergent outfow from external rural areas in the upper mixed layer. In recent years, 
some scholars have performed outdoor scale experimental measurements. Chen et al. [31] 
conducted outdoor measurements to study the effect of aspect ratio on fow and heat 
transmission on the street. Chen et al. [32] made a feld experiment to study the effect of 
aspect ratios and building heat storage on urban heat transfer. 

The two-dimensional turbulent porous media model has been adopted to research the 
UHI effect. However, research on the three-dimensional turbulent porous media model is 
lacking. The urban spatial form is a key factor affecting the UHI effect. Therefore, it is vital 
to demonstrate that the three-dimensional turbulent porous method is suitable to study the 
UHI effect. Gu and Zhang [33] used a three-dimensional turbulent porous media model to 
study airfow in Fengxi New City, which laid the foundation for future work and provided 
a method, references, and a theoretical basis for our work. 

Cities have various shapes. In large cities with an approximately circular shape, the 
functional areas form a concentric structure. Chicago, Tokyo, Moscow, Paris, Chengdu, 
and Beijing are examples of large cities with circular shapes. Therefore, investigation for 
the UHI effect of the cities with a concentric structure is essential. This paper adopts a 
three-dimensional turbulent porous mothed to study the UHI effect of a small-scale city 
with a concentric circle structure. The research results provide a reference for alleviating 
the UHI problem of cities with this structure. The entire city was considered to be a 
secondary porosity porous media porous medium. The macroscale fow and heat transfer 
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inside the city were modeled employing a turbulence porous media model. The effects of 
anthropogenic heat, building density, and ambient crosswind speed on the UHI of the city 
were investigated. The modeling results could be used to guide making scientifc urban 
development plans to mitigate the UHI effect. 

2. Model Descriptions and Methodology 
2.1. Geometric Model 

Burgess proposed a concentric structure model of an urban area and provided a 
graphical description [34]. The concentric circle model was divided into fve concentric 
areas, i.e., the central business district, the transitional area, the workers’ residential area, 
the better-quality residential area, and the senior residential area, according to Burgess’ 
theory. The central business district was designed as a place for commerce, culture, and 
other major social activities, as well as the center of the urban transportation network. 
The transition zone was originally a residential area for the rich. Due to the continuous 
development of industry and commerce, it gradually became a place where environmental 
quality declined. In our paper, we simply refer to the three residential areas in the concentric 
circle model as residential areas. Cities with a concentric circle structure are generally 
clumpy structure cities. Only when the city’s area is relatively large and the shape is close to 
a circle, can each functional area form a ring structure. Urban fows have large spatial and 
temporal ranges. The urban scale in this study is in mesoscale (1–100 km) [35]. According 
to the pollutant dispersion theory, the studied area could be separated into fve scales. The 
urban scale is 10–20 km [36]. 

Since real cities are complex and large scale, this paper establishes a three-dimensional 
physical model of the urban structure of a small-scale concentric circle model. Different 
building partitions with different building heights, building densities, and bottom heat fux 
densities are used. Due to the symmetry of the concentric circle model, the wind direction 
is not considered in this study as a factor infuencing the UHI. The porosity, anthropogenic 
heat of the central business district, and the ambient crosswind speed are considered as 
infuencing factors. As shown in Figure 1a, London is a city with a typical concentric circle 
pattern. To simplify the modeling (Figure 1b), the following assumptions are made: (1) 
The calculation domain size is 11,000 m (x) ×10,000 m (y) × 800 m (z). We use half of 
the domain in the calculation because the geometric model is symmetric to reduce the 
computing resources; (2) The urban area consists of three concentric circles, namely, the 
central area, the transition area, and the residential area from the inside to the outside of 
the circles. The heights of the areas are 80 m, 40 m, and 20 m, respectively. The diameters 
of the concentric circles are 1000 m, 3000 m, and 5000 m, respectively; (3) The entire city is 
treated as a porous area, and porosity is consistent in each area. The calculation domain 
includes the urban areas and the free fow feld areas. The porosity of the free fow feld 
area is 1.0, and that of the urban area is 0.6–0.8; (4) The physical properties of the transition 
zone and residential area are the same. 

http:pattern.To
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Figure 1. The evolution of the geometric model: (a) Map of London; (b) three-dimensional geometric model and bound-
ary conditions. 

2.2. Mathematical Model 

The surface-averaged ψv and volume-average ψf are typically used to describe the 
characteristics of porous media. Whitaker [21] defned two time-averaged values, ψv and 
ψ f , to describe turbulent fow in porous area. Macroscale time-averaged value was obtained 
by the microscale volume-averaged and time-averaged value for a basic representative 
volume. The macroscale time-averaged volume was calculated as follows: Z1 

ψv = ψdV (1)
ΔVv 

ΔVv Z1 
ψ f = ψdV (2)

ΔVf 
ΔVf 

ψv = φψ f (3) 

where ΔVv indicates total volume of basic representative volume. ΔVf represents fuid 

volume of basic representative volume. In this paper, ψv and ψ f are written as ψv, and ψf . 
The porosity φ represents the volume fraction of the fuid, which is given by 

φ = ψ f /ψv (4) 

The airfow passing through the building arrays was set to be incompressible turbulent 
fow. The porous turbulence method was employed to study the airfow. Hang and Li [15] 
proposed a single domain method to determine the transport equation using macro k-
ε porous media method derived by Antohe and Lage [22]. This equation provided an 
improved prediction of the velocity of the fuid fowing through the building arrays. The 
thermal properties were assumed to remain the same, except air density. The Coriolis force 
generated by the rotation of the earth was not considered. The transport equation of the 
porous media method was simplifed as follows. The fow domain lower than the building 
altitude was referred to as urban canopy. Since maximum building altitude is typically less 
than 200 m, the compressible airfow in the urban canopy is usually ignored. The transport 
equation of the incompressible fow in the urban canopy was defned as follows: 
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Continuity equation: 
∂(ϕuf 

i) = 0 (5)
∂xi 

The momentum conservation equation: 

ρ∂(ϕuf 
iu

f 
j) ∂ 

" 
∂ϕuf 

# 
∂ϕpf 2 ∂ϕkf 

= (µJ + µt) i − ( + ρ )
∂xj ∂xj ∂xj ∂xi 3 ∂xi 

udarcy uForch z }| { z }| {
µ ρCFf f− ϕ ϕui − ϕ √ ϕQfϕui + δi3ρ[β(T − Tin) − 1] (6)
K K 

Equation for the turbulent kinetic energy (TKE): 

TKEdarcy " # TKEgen
f z}|{ z }| {

ρ∂(ϕuik
f) ∂ µt ∂ϕkf µl = (µJ + ) − ρϕεf + ϕGk −2ϕ ϕkf 

∂xj ∂xj σk ∂xj K

TKEForch TKE_FK z }| {z }| {
8 CF CF− ϕ2ρ √ Qfϕkf+2ϕϕ2ρ √ Fk (7)
3 K K 

Equation for the energy dissipation: " # 
fρ∂(ϕuiε

f) ∂ µt ∂ϕεf εf εf 
= (µJ + ) − Cε1ϕ Gk − JρCε2ϕ εf 

∂xj ∂xj σε ∂xj kf kf

EDForch2EDdarcy EDForch1 z }| {z }| { z }| {
µl 8 √ 

CF 8µ ∂k f ∂Qf 
−2ϕ ϕεf− ϕ3ρ Qfεf − φφ2√ 

CF 
K 3 K 3 K ∂xr ∂xr 

EDForch3 z }| {" #f f f f
CF ∂ ujui ∂2uf ujui ∂2 ∂uf 

i i+ 2φ2φ √ µvt ( ) + 2µvt ( ) (8)
Qf Q f 2K ∂xr ∂xr∂xj ∂xr ∂xj 

f f fuiuj ∂ϕujFk = µt (9)
Qf ∂xi 

f∂u
Gk = µt 

i ( i + ) (10) 
∂uf ∂uf 

j 

∂xj ∂xj ∂xj 
√

Q = uiui (11) 

2 
(kf) 

µt = Cµρ (12)
εf 

f fρ is fuid density; ui , Q
f, p , kf, and εf represent the fuid velocity, intrinsic average 

velocity, pressure, turbulent kinetic energy, and turbulent dissipation rate. µ and µt are 
dynamic viscosity and turbulent viscosity, respectively. J is turbulent viscosity ratio, which 
was assumed to be 1 in porous media. σk, σε, and Cµ are constants, with values of 1.0, 1.3, 
and 0.09. K and CF are permeability and the Forchheimer coeffcient, respectively, which 
were calculated as follows: 

φ3h2 
K = (13)

150(1− φ)2 
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1.75β
CF = p (14)

150ϕ3 

where h is feature scale of the solid matter in the porous medium. β is the Constant, which 
is β = 1 in original Ergun equation. 

In momentum equation (Equation (6)) and the TKE equation (Equation (7)), the Darcy 
terms (udarcy and TKEdarcy) and Forchheimer terms (uForch and TKEForch) indicates 
the viscous resistance of fuids and solids to fuids, respectively. These four terms have 
negative values, refecting the reduction in the momentum and turbulent transport due 
to the Darcy force and Forchheimer force. In Equation (7), TKE_Fk is the second term of 
the TKE generated by the Forchheimer term, which is a sink or source term, depending 
on magnitude of velocity component. In Equation (8), Darcy source and frst Forchheimer 
source are negative terms, resulting in turbulent dissipation. A comparative analysis of the 
above items was conducted by Hang and Li [15], who found that the Forchheimer term 
was larger than Darcy term by two magnitudes because the dynamic viscosity effect was 
relatively small in a fow with a high Reynolds number. It is assumed that EDForch2 and 
EDForch3 are much lower than EDForch1; thus, EDForch2 and EDForch3 are ignored in 
this study. 

Buildings release artifcial heat and radiant heat absorbed from the sun. Therefore, 
local heating cannot be used in the urban porous media model to describe heat exchange 
between buildings and air. Two equations are needed to describe the energy equations 
of the solid phase and the fuid phase. However, we only focused on the air temperature 
of the external fow feld when studying the UHI, thus, we only considered the energy 
equation of the fuid phase. The heat transmission from building to air is regarded as the 
energy source term applied to the air region. The energy equation is defned as follows: 

∂(ρcpφujT) ∂ ∂T 
= (λφ ) + (1− φ)q (15)

∂xj ∂xj ∂xj 

Urban heat sources mainly are waste heat generated by buildings and industries and 
ground heat sources. The surface heat source is expressed by distributing the heat fow on 
the ground surface. For building heat source, the heat source intensity per unit building 
volume (W/m3) q of the building was calculated by using Equations (16) and (17), which is 
the ratio of building intensity heat source per unit surface Qb (W/m2) to body surface area 
ratio Vb. 

q = Qb/Vb (16) 

The body surface area ratio is given by 

ZH 

Vb = (1− φ)dz (17) 
0 

H is building altitude (m). In this paper, porosity is regarded as a constant in different 
areas of the porous medium, thus 

Vb = (1− ϕ)H (18) 

when the heat fux density of the bottom boundary is given. It is necessary to consider the 
infuence of many factors on the absorption of solar radiation. 

Refection, scattering, and absorption of solar radiation by atmosphere and refection 
by the ground surface weaken the solar radiation absorbed by the ground. Thus, solar 
radiation absorbed by the ground is approximately one-third of the incoming solar radia-
tion. In addition, solar radiation entering the atmosphere is affected by the refection and 
scattering of clouds. Zuev et al. [37] used statistical models to calculate the atmospheric 
absorption in the presence of clouds. The results showed that the cloud type and cloud 
cover affected the total absorption of the atmosphere. Martinez-Chico et al. [38] analyzed 
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the temporal and spatial distribution of solar radiation under different weather conditions. 
The results showed that cloud types and characteristics are important factors for solar 
radiation attenuation. In addition, the albedo of different materials on the urban ground, 
the scattering and absorption of aerosols, and the absorption of water vapor also affect the 
solar radiation reaching the ground. In a simulation study of the UHI effect, the heat fux 
of the city was typically 100 W/m2–200 W/m2 [39]. This study focuses on the effect of 
artifcial heat on the UHI effect. Therefore, the evening period (100 W/m2) was chosen to 
study the effect of artifcial heat on the UHI effect to reduce the infuence of solar radiation. 

2.3. Boundary Conditions 

The vertical wind is infuenced not only by weather but also by the thermal effect 
caused by the surface properties and terrain. Therefore, the wind speed changes with the 
altitude (see Figure 1b). An exponential or logarithmic function can be used for describing 
wind speed profle for inlet boundary conditions [40,41]. We used an exponential function 
in this study. Since the state of outlet fow is fully developed, the outlet boundary conditions 
are categorized as an outfow. Non-slip wall boundaries are set for building walls surfaces. 
The upper boundary of the building walls is defned to be symmetric. The side of the area 
is relatively far from the urban area. Thus, a symmetric plane is used. 

The exponential function formula of gradient wind is as follows: 

0.16 
uin = ure f ( ) (19)

zre f 

z 

According to Li [15], the TKE and dissipation rate at the entrance are marked as follows: 

kin = 0.01ure f 
2 (20) 

3/4kin
3/2/(kz)εin = Cµ (21) 

uref is the characteristic velocity at the altitude zref 20 m above the ground, and κ is an 
empirical constant called the Von Karman constant which is 0.4. 

The inlet temperature distribution along the height is as follows 

Tin = T0 − γz (22) 

where γ is the vertical temperature reduction rate (K·m−1). 
The inlet pressure distribution along the height is 

pin = p0 − ρgz (23) 

As shown in Figure 1b, the domain consists of a porous area and a transparent fuid 
area. The mass, kinetic energy, as well as turbulent exchange at the interface are complex. 
A single domain is used to resolve e complex interface issue. The computational domain 
is considered a porous medium. The clear fuid region is regarded as a porous area and 
its porosity is 1.0. Permeability K in the domain is infnite, and the Forchheimer term is 
close to 0. Thus, the turbulent transport equation of porous area is reduced to the general 
turbulent transport equation in clear fuid region. 

2.4. Grid Independence Test and Computational Procedure 

The grid quality of the structured grid is relatively high, with rapid convergence, 
and low computational requirements [42]. For the same meshing zone, a structured mesh 
is more economically and effciently reduces false diffusion than an unstructured mesh. 
Therefore, a structured mesh was used in the calculation domain in this study. Figure 2 
shows the grid in the entire computational domain and local grid size in the city porous 
medium area. The grid size in the porous area should be larger than the architectural 
scale when the turbulent porous method is employed. Thus, the smallest grid size was 
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ΔX = 8 m, ΔY = 1 m, and ΔZ = 3 m. The size of the grid gradually increases from the porous 
media area to the entrance and exit of the computing domain and the sides to reduce the 
computational complexity. 
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The CFD software ANSYS FLUENT 15.0 was employed for numerical simulation. 
Finite volume method was employed for discrete equations and convergence standard was 
10−6. A double-precision separation implicit solver was utilized. The pressure discrete 
format was PRESTO. The coupling of pressure and velocity adopted the SIMPLE. Second-
order upwind divergence format was adopted for dispersion of convection and diffusion 
terms. The under-relaxation factor of the velocity and pressure was 0.5. A turbulence-
related under-relaxation factor below 0.5 was chosen to prevent divergence. The inlet 
boundary conditions and source terms of the governing equation of the turbulent porous 
media were determined with a user-defned function (UDF). 

The grid independence was verifed to ensure the calculation accuracy. Three grid 
systems (M1, M2, and M3) with increasing grid numbers were defned. The total grid 
numbers of the three systems were 5,344,200, 4,543,200, and 3,715,200 respectively. 

The wind speeds and temperatures in the x-direction of the pedestrian layer (z = 1.5 m) 
of the three mesh systems were compared with the same working condition (the incoming 
wind speed is 2 m/s). In Figure 3, errors of the maximum wind speed and temperature 
are less than 5% in the three systems. The error in M3 is the largest, and the calculation 
results of the other two mesh systems are approximately the same. The results show that 
an increase in the number of grids does not signifcantly infuence the calculation results. 
Therefore, the M2 mesh system was adopted for this study. 
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2.5. Model Verifcation 

Model verifcation is indispensable to determine precision and trusty of numeri-
cal simulation. Numerical simulation results must be experimentally validated, thus. 
two experiments were undertaken to validate the feasibility of our three-dimensional 
urban scale turbulence model. The wind tunnel tests were undertaken to confrm prac-
ticability of the urban scale porous method. Then we verifed the practicability of the 
three-dimensional porous method through feld measurements in the Central Garden 
Community of Wuhan City. 

However, the microscale method is often impractical because of the complex internal 
structure of the porous media and the large computational complexity. Thus, a macroscale 
method is often used, which requires averaging the particles on a larger scale and selecting 
larger volume micelles rather than particles. We call the macroscale micelles the represen-
tative volume element (RVE), which is larger than a single pore to contain enough fuid 
particles and much smaller than the entire fow area. At this scale, it is meaningful to 
average the RVE. The scale of an RVE can reach tens of meters in the horizontal direction. 
A single or multiple buildings can be included in an RVE. Therefore, the experimental 
parameter values, such as the air temperature and the airfow speed at a single location, do 
not represent the values of the RVE. 

Thus, the validation process was divided into two steps to verify the accuracy of the 
turbulent porous media model. 

We collected feld measurements in the Nanhu Central Garden Community in Wuchang 
District, Wuhan City, to further verify the reliability of the turbulent porous media model 
(Figure 4). The community is surrounded by streets and has buildings with various heights. 
We selected measurement points along the main roads and the centers of local communities. 
Data were obtained at the height of 2 m, as shown in Figure 5. The measurements were 
undertaken in July on a typical summer day, and the average wind speed, wind orientation, 
and the largest wind were tested at each point every day in the same period. The average 
wind speed was measured for 10 min each time by 3–4 times per day. 
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A two-step verifcation process was used. Firstly, the measurements were under-
taken to validate the calculation results by using the standard CFD method outcomes, 
as displayed in Figure 7. The reliability of the turbulent porous method was verifed by 
comparing the calculation results by using the two simulation methods with the experi-
mental measurement results. Since the modeling of porous media is relatively abstract, 
the wind speed within the building complex has no consultation meaning. Thence, four 
monitoring points (1, 2, 4, 5) in the building group were omitted, and the correlation 
between the simulation and the measurement results at the three testing points (3, 6, 7) 
on the north-south arbor was determined. The boundary-setting details of the standard 
method and porous method are listed in Table 1. 
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Table 1. Boundary setting details of standard method and porous method. 

Surfaces Standard Method Porous Method. 

Inlet 
Sides and Top 

Underlying surface 
Outlet 

Porous zone 

Velocity-inlet 
Symmetry 

No-Slipping Wall 

Outfow 

Velocity-inlet 
Symmetry 

No-Slipping Wall 
Outfow 
Interior 

The verifcation results display a good agreement between the measurement and the 
microscale and macroscale simulation results, indicating the reliability of the proposed 
porous media model on the main axis of the residential area. This also shows that it is 
feasible to utilize a three-dimensional turbulent porous method to model a community-
scale wind environment. This makes it possible to use computational fuid dynamics (CFD) 
to simulate urban-scale wind and heat environments. 

3. Results and Discussion 
3.1. Characteristics of Macroscale Porous Flow 

Figure 8 displays distribution of the macroscale parameters in plane y = 0 (the ambient 
crosswind speed is 2 m/s). The porous medium has an additional momentum loss in 
the momentum equation. The fow patterns obtained from the conventional CFD model 
and the porous method are similar. Resistance of the porous medium reduces the fow 
on the windward side of the city. The horizontal velocity on the windward side of each 
upstream area decreases rapidly, while the velocity increases rapidly in the vertical direc-
tion. Figure 8c displays TKE distribution profle. The largest TKE values are observed 
on the windward side of the central area. Subsequently, the turbulent shear stress causes 
energy to be transferred downward. On the leeward side of the central area, the turbulent 
shear stress directs the vertical velocity of air downward (the vertical velocity is negative), 
moving the air from above into the urban porous media area. 
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However, there are some differences between the standard method and porous method 
results of the fow. In the porous method results, the airfow in the street is ignored. The 
buildings on the windward side of the city are an important source of turbulence in the 
standard method, as shown in Figure 8d. In the porous method, the buildings on the 
windward side of the porous medium are a turbulent sink, as displayed in Figure 8e. The 
TKE above the top interface between the porous area and the near leeward edge of porous 
area is larger than other areas because of the shear layer near the interface between the 
porous area and the free fuid area. The downward transmission of momentum caused by 
the turbulent shear stress is the driving force for the fow of the porous area. The resistance 
effect in the porous area (Darcy and Fochheimer terms) helps remove the momentum of 
the porous area. 

The results indicate that the porous media model as well as the conventional CFD 
model can predict the macroscale fow of the city, although it cannot adequately predict 
the macroscale TKE of the area close to the upwind fringe of the porous area. 
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plane y = 0 when the wind speed is 2 m/s. 

3.2. Infuence of Different Parameters on the Urban Heat Island Effect 
3.2.1. Infuence of Ambient Crosswind Speed 

The UHI effects are infuenced by many factors. Memon et al. [43] summarized these 
factors and proposed some effective measures to reduce the UHI effect. Appropriate 
urban planning and design can induce wind into the city as so to alleviate the UHI phe-
nomenon [44]. Some scholars used linear and nonlinear regression equations to predict the 
UHI intensity. They discovered that the UHI intensity decreased linearly with the wind 
speed [45,46]. In this study, we discussed the infuence of wind speed on the UHI intensity 
in the urban area with a concentric structure, the porosity in the urban area from the 
inside to the outside was set to be 0.6 to 0.8, and the artifcial heat intensity was 80 W/m2, 
60 W/m2, and 40 W/m2, respectively. The ambient crosswind speeds were set to be 0 m/s, 
2 m/s, 3 m/s, 5 m/s, and 8 m/s, respectively, to explore the infuence of wind on the 
UHI effect. 

Figure 9 displays the profles of UHI intensities at various heights with different 
ambient wind speeds. The lower the ambient speed, the higher the UHI intensity is. The 
UHI intensity is the highest when there is no wind in the city, especially in the central 
business district. A strong UHI effect is observed in the front of residential areas. A 
low-speed wind has a limited capacity to dissipate the artifcial heat. The UHI effect is 
generated in front of the transition zone and the central business district. 
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Figure 9. The horizontal profles of the UHI intensities at different ambient crosswind speeds at heights of (a) 2 m, (b) 10 m, 
(c) 40 m, and (d) 80 m in the plane y = 0. 

As displayed in Figure 9, with wind speed increasing from 2 m/s to 3 m/s, UHI 
intensity decreases from the upstream boundary of the city to the downstream exit. At the 
height of 2 m (Figure 9a), increasing the wind speed by 1 m/s reduces the UHI intensity 
by about 1.9 K, which is consistent with the results informed by Memon and Leung [47]. 
The range and amplitude of the decrease in the UHI intensity are signifcantly reduced in 
the whole region with the wind speed increasing from 3 m/s to 5 m/s, with the greatest 
decrease of 1.7 K in the UHI intensity in the central urban area. 

Regardless of wind speed, upstream transition area and residential area are hotter 
than the downstream transition area and residential area. The reason is that the maximum 
TKE is generated on the windward side of the central urban area. The turbulent shear stress 
transfers the energy and airfow downward on the leeward side of the central business 
district (vertical speed is negative), bringing the upper air into an urban porous medium 
area. Therefore, the low-temperature air at the top of the city moves downward on the 
leeward side of the city, reducing the UHI effect on the leeward side. 

Figure 10 displays the vertical profles of UHI intensities at various ambient crosswind 
speeds in the plane x = −2500 m. A strong UHI effect is observed in front of the residential 
areas of the city (x = −2500 m) since wind speed is smaller than that in the other city areas 
at the same altitude. The low-speed wind is not conducive to dissipate urban heat. The UHI 
intensity is signifcantly higher at the bottom than that on the top of the urban area. The 
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UHI intensity at the height of the residential area is higher than that above the residential 
area, and the UHI intensity above the height of the residential area decreases rapidly with 
the height increasing. At heights exceeding 40 m, the UHI effect is not noticeable. 
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Figure 11 shows the vertical profles of the UHI intensities at various ambient cross-
wind speeds in the center of the upstream residential area (x=−2000 m). With the height 
increasing, the UHI intensity gradually decreases. At heights greater than 20 m, the heat 
generated in front of the residential area is more likely to diffuse to the downstream area 
because the front residential area is not affected by the resistance of the urban porous 
medium area. Therefore, the UHI intensity in the center of the upstream transition zone is 
higher than that in the other areas. At the heights exceeding the urban canopy, the UHI 
intensity does not continue to increase but gradually decreases with the height increasing. 
There is no UHI effect at heights greater than 500 m. 
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3.2.2. Infuence of Porosity in the Central Urban Area 

In a real urban area, the sum of building density and porosity is 1, and the range of 
building density is 0.18~0.62; thus, the range of the fuid porosity is 0.38~0.82 [48]. The 
intensity of artifcial thermal sources in urban areas remains unchanged. Porosities of 
residential area and transition area are 0.8 and 0.7, respectively. We set the porosity of the 
central business district to be 0.5, 0.6, 0.7, and 0.8 to analyze the infuence of the building 
density of the urban central business district on the UHI effect. 

As shown in Figure 12, the smaller the porosity and the higher the building density, 
the greater the Darcy force and Forchheimer force will be, inhibiting more airfow. If the 
intensity of the artifcial heat source in the central business district remains unchanged, 
the greater the porosity in the central business district, the smaller the Darcy force and 
Forchheimer force will be. Thus, the heat generated in the upstream transition zone 
can easily diffuse to the central business district. The temperature in the central area is 
dramatically higher than that in the other areas when porosity of the central business 
district is 0.8. Since the porosity of the downstream transition zone is lower than that of the 
central business district, the airfow is greatly inhibited, and the heat in the central business 
district cannot be diffuse downstream. When the porosity of the central business district is 
0.5, large Darcy and Forchheimer forces will be generated. When the air fows from the 
upstream transition zone to downstream, it bypasses the central business district due to its 
large fow resistance. As a result, the heat in the central area cannot diffuse downstream, 
causing the increment of UHI intensity in the central business district. UHI effect is similar 
to the porosity of 0.5 and 0.7 in the central business district. Therefore, the porosity in 
the central business district has an optimal value at which the heat in the central business 
district can easily diffuse downstream. In the four cases analyzed in this paper, the optimal 
porosity value in the central urban area is 0.6. 

At a height of 2 m from the ground (Figure 12a), the UHI intensity increases rapidly 
in the upper reaches of the city. At a height of 10 m (Figure 12b), the UHI effect in the 
upstream transition zone is not obvious. At a height of 40 m (Figure 12c), the maximum 
UHI intensity in the central business district is 1.7 K. At a height of 80 m (Figure 12d), UHI 
intensity of the central business district is signifcantly lower. 
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3.2.3. Infuence of Anthropogenic Heat in the Central Business District 

Studies on the intensity of anthropogenic heat sources in a large number of cities [49,50] 
have shown that anthropogenic heat intensifes the UHI effect [48,51,52]. Bhuian et al. [53] 
analyzed the land surface temperature (LST) data from 2000 to 2019 and concluded that 
population, lack of greenery and man-made heat are the main factors affecting the urban 
heat island effect. Yao et al. [54] conducted a combined analysis on satellite data and station 
data and concluded that human activities are the main driving force leading to the increase 
of the canopy layer UHI and surface UHI. We assume the intensity of the anthropogenic 
heat source Q in the central business district to be 40 W/m2, 60 W/m2, 80 W/m2, 100 W/m2 

to investigate the infuence of anthropogenic heat on the UHI effect. The porosities inside 
and outside of the urban area are 0.6 and 0.8, respectively. The intensities of the artifcial 
heat source in the residential area and the transition area are 40 W/m2 and 60 W/m2. 

As shown in Figure 13, as the intensity of the artifcial heat source in the central urban 
area increases, the UHI intensity in the area increases signifcantly. The heat source intensity 
has no effect on the UHI intensity on the downstream transition area and residential area. 
The frst strong UHI effect occurs in front of the city. As the airfow enters the urban area, 
part of it fows over the city due to the effect of the urban buildings, creating a high wind 
speed area above the windward edge of the city. The high-speed wind increases heat 
exchange fux, rapidly dissipating the city’s anthropogenic heat. Therefore, the UHI effect 
is the largest in front of the three urban porous medium areas, followed by a decline in the 
UHI intensity. 

At a height of 2 m from the ground (Figure 13a), with anthropogenic heat source 
intensity increasing, the UHI intensity in the central urban area is also increasing, with a 
maximum value of 4.5 K. At a height of 10 m (Figure 13b), the heat diffuses to the central 
urban area due to the ambient crosswind, and no UHI effect is observed in the upstream 
transition area. At a height of 40 m (Figure 13c), there is no sudden increase in the UHI 
intensity at the front of the city. At a height of 80 m (Figure 13d), there is no UHI effect in 
the entire area because the height of the upstream buildings is lower than 40 m. 
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4. Discussion 

In this paper, we used the modifed turbulent porous method to calculate temperature 
and velocity distribution in a city with a concentric circular structure. The impact of three 
factors (i.e., artifcial heat, incoming fow speed, and porosity in the central area) on the 
turbulent fow and heat transfer in the central urban area of a simplifed city model with a 
concentric circular structure was analyzed. The simulation method allows the analysis of 
the UHI effect at the macroscale, provides high calculation accuracy and does not require 
high computing power. 

Nevertheless, this study has several limitations, which will be addressed in our 
research in the next stage. First, we assumed that the city was a homogeneous porous 
medium. The porosity was constant in the calculation, and the anisotropy of the porous 
medium was not considered. In addition, the city model was relatively small and consisted 
of a simplifed concentric circle structure that ignored the infuence of urban blocks on 
the UHI effect. Second, the geometric city model was symmetrical, and neither the city 
morphology nor the effect of predominant wind direction on UHI effect was considered. 
Moreover, it was assumed that an ideal value of one-third of the solar radiation intensity 
was absorbed by the ground, in accordance with previous experimental and empirical 
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research data. In reality, absorption of solar radiation by the ground is affected by cloud 
refection and scattering, aerosol scattering and absorption, water vapor absorption, and 
other factors before reaching the earth’s surface. 

Therefore, in the future study, we will consider the anisotropy of the porous struc-
ture and different porosities, depending on the multi-spatial characteristics of the urban 
structure in different directions. In addition, the effect of the city spatial form on the UHI 
effect will be considered in our future work. Optimizing the urban spatial form is one 
of the important measures to alleviate UHI. Guo et al. [55] considered the urban spatial 
morphology at the community scale and discussed the spatial differentiation characteristics 
and the driving factors of land surface temperature (LST) of the urban area of Dalian from 
2003 to 2018. Oke [56] used a simple scale model to study the infuence of urban geometric 
shapes on urban heat islands. The experimental results show that the geometric shape of 
the canyon in the city center is the main factor t producing the UHI at night. 

5. Conclusions 

Porous media models can be used to research the impact of buildings on the UHI 
effect in modern cities This model can preserve good modeling accuracy but requires much 
less computational resource. In this paper, a porous method was used to analyze spatial 
infuence of ambient crosswind speed, porosity, and anthropogenic heat source intensity in 
the central business district on the UHI effect of a city with a concentric circle pattern. The 
important conclusions are drawn as follows: 

1. The extent of the UHI effect is signifcantly affected by the ambient crosswind speed. 
An increase in the wind speed signifcantly reduces the UHI intensity, especially in 
the central area of a city. A 1 m/s increase in the wind speed reduces the UHI intensity 
by approximately 1.7–1.9 K. 

2. In concentric circle cities, an optimal porosity exists for the city central area that 
facilitates artifcial heat dissipation. In this study, the optimal porosity value was 
about 0.6, and the heat dissipation performance was approximately the same for the 
porosity of 0.5 and 0.7. 

3. With anthropogenic heat source intensity increasing, the UHI intensity in the central 
business district is also increasing, with a maximum value of 4.5 K at the measured 
height of 10 m. The rate of increase in the UHI intensity in the central business district 
is infuenced by the upstream area. 
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Nomenclature 

CF Forchheimer coeffcient 
dp Characteristic size of solid particles in porous media (m) 
g Gravitational acceleration (m·s−2) 
H Height of urban canopy (m) 
pf Intrinsic average of the time-averaged pressure (Pa) 
Q Urban anthropogenic heat intensity(W·m−2) 
Qb Intensity of building heat source per unit area of ground surface (W·m−2) 
q Intensity of building heat source per unit volume of buildings (W·m−3) 
Tin Temperature at inlet (K) 
ui Wind speed components (m s−1) 
uref Reference velocity (m·s−1) 
Vb Volume of buildings per unit of ground surface (m3 m−2) 
xi Cartesian coordinates 
z Height (m) 
zref Reference height (m) 
γ The vertical temperature reduction rate (Km−1) 
ΔVf Fluid contained in the averaging volume (m3) 
ΔVυ Total volume of the averaging volume (m3) 
φ Porosity 
ε f Intrinsic average of the time-averaged dissipation rate (m2 s−3) 
β Constant 
εin Inlet mean dissipation rate at inlet (m2 s−3) 
µ Dynamic viscosities (kg·m−1·s−2) 
µt Turbulent viscosities (kg·m−1·s−2) 
ρ Density (kg·m−3) 
Ψ Macro time-averaged quantities 
Ψ f Intrinsic average variable 
Ψυ Superfcial average variable 
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