4,820 research outputs found

    IT2017 Report: Implementing A Competency-Based Information Technology Program (Panel)

    Get PDF
    ACMand IEEE have developed a computing curriculum report titled Information Technology Curricular 2017: Curriculum Guidelines for Undergraduate Degree Programs in Information Technology, also known as IT2017 [4]. The development of this report has received content contributions from industry and academia through surveys as well as many international conferences and workshops. Open online publication of the report became available in fall of 2017. In this special session, �ve members of the IT2017 executive committee will present a digest of the content of the report, describe the proposed IT curricular framework, and facilitate open and vigorous discussion of the report\u27s guidelines for developing new information technology programs or enhancing existing ones. The novelty of the report is its focus on industry-informed competencies that IT graduates should have to meet the growing demands of a changing technological world in the next decade. The experience should provide a better understanding of IT in a modern age

    Recognition of 2-D occluded objects and their manipulation by PUMA 560 robot

    Get PDF
    Journal ArticleA new method based on a cluster-structure paradigm is presented for the recognition of 2-D partially occluded objects. This method uses the line segments which comprise the boundary of an object in the recognition process. The length of each of these segments as well as the angle between successive segments comprise the only information needed by the program to find an object's position. The technique is applied in several steps which include segment clustering, finding all sequences in one pass over the data, and final clustering of sequences so as to obtain the desired rotational and translational information. The amount of computational effort decreases as the recognition algorithm progresses. As compared to earlier methods, which identify an object based on only one sequence of matched segments, the new technique allows the identification of all parts of the model which match with the apparent image. These parts need not be adjacent to each other. Also the method is able to tolerate a moderate change in scale and a significant amount of shape distortion arising as a result of segmentation or the polygonal approximation of the boundary of the object. The method has been evaluated with respect to a large number of examples where several objects partially occlude one another. A summary of the results is presented

    Cyclin B1/Cdk1 phosphorylation of mitochondrial p53 induces anti-apoptotic response.

    Get PDF
    The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53(+/+) status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53(-/-) cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53(-/-) cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53

    An Exploratory Study to Improve Sales Operations When Selling Multiple Prescription Drugs

    Get PDF
    This paper explores the importance of integrating knowledge with quantitative modeling process to improve sales operations in multiple product selling situations in the pharmaceutical industry. A knowledge-based approach is proposed to minimize challenges in detailing multiple products to physicians who are more and more difficult accessing in recent years. The performance of this new approach is compared against the traditional approach via actual implementation by the firm that is sponsoring the research. Results based on three months of implementation indicate that the knowledge-based approach performs significantly better with increasing the number of responsive physicians by 71% and profit by 9%

    Understanding the Paradoxical Effects of Power Control on the Capacity of Wireless Networks

    Full text link
    Recent works show conflicting results: network capacity may increase or decrease with higher transmission power under different scenarios. In this work, we want to understand this paradox. Specifically, we address the following questions: (1)Theoretically, should we increase or decrease transmission power to maximize network capacity? (2) Theoretically, how much network capacity gain can we achieve by power control? (3) Under realistic situations, how do power control, link scheduling and routing interact with each other? Under which scenarios can we expect a large capacity gain by using higher transmission power? To answer these questions, firstly, we prove that the optimal network capacity is a non-decreasing function of transmission power. Secondly, we prove that the optimal network capacity can be increased unlimitedly by higher transmission power in some network configurations. However, when nodes are distributed uniformly, the gain of optimal network capacity by higher transmission power is upper-bounded by a positive constant. Thirdly, we discuss why network capacity in practice may increase or decrease with higher transmission power under different scenarios using carrier sensing and the minimum hop-count routing. Extensive simulations are carried out to verify our analysis.Comment: I refined the previous version in many places, including the title. to appear in IEEE Transactions on Wireless Communication

    Exploiting the noise: improving biomarkers with ensembles of data analysis methodologies.

    Get PDF
    BackgroundThe advent of personalized medicine requires robust, reproducible biomarkers that indicate which treatment will maximize therapeutic benefit while minimizing side effects and costs. Numerous molecular signatures have been developed over the past decade to fill this need, but their validation and up-take into clinical settings has been poor. Here, we investigate the technical reasons underlying reported failures in biomarker validation for non-small cell lung cancer (NSCLC).MethodsWe evaluated two published prognostic multi-gene biomarkers for NSCLC in an independent 442-patient dataset. We then systematically assessed how technical factors influenced validation success.ResultsBoth biomarkers validated successfully (biomarker #1: hazard ratio (HR) 1.63, 95% confidence interval (CI) 1.21 to 2.19, P = 0.001; biomarker #2: HR 1.42, 95% CI 1.03 to 1.96, P = 0.030). Further, despite being underpowered for stage-specific analyses, both biomarkers successfully stratified stage II patients and biomarker #1 also stratified stage IB patients. We then systematically evaluated reasons for reported validation failures and find they can be directly attributed to technical challenges in data analysis. By examining 24 separate pre-processing techniques we show that minor alterations in pre-processing can change a successful prognostic biomarker (HR 1.85, 95% CI 1.37 to 2.50, P < 0.001) into one indistinguishable from random chance (HR 1.15, 95% CI 0.86 to 1.54, P = 0.348). Finally, we develop a new method, based on ensembles of analysis methodologies, to exploit this technical variability to improve biomarker robustness and to provide an independent confidence metric.ConclusionsBiomarkers comprise a fundamental component of personalized medicine. We first validated two NSCLC prognostic biomarkers in an independent patient cohort. Power analyses demonstrate that even this large, 442-patient cohort is under-powered for stage-specific analyses. We then use these results to discover an unexpected sensitivity of validation to subtle data analysis decisions. Finally, we develop a novel algorithmic approach to exploit this sensitivity to improve biomarker robustness

    Half integer quantum Hall effect in high mobility single layer epitaxial graphene

    Full text link
    The quantum Hall effect, with a Berry's phase of π\pi is demonstrated here on a single graphene layer grown on the C-face of 4H silicon carbide. The mobility is ∼\sim 20,000 cm2^2/V⋅\cdots at 4 K and ~15,000 cm2^2/V⋅\cdots at 300 K despite contamination and substrate steps. This is comparable to the best exfoliated graphene flakes on SiO2_2 and an order of magnitude larger than Si-face epitaxial graphene monolayers. These and other properties indicate that C-face epitaxial graphene is a viable platform for graphene-based electronics.Comment: Some modifications in the text and figures, 7 pages, 2 figure
    • …
    corecore