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Abstract

A new method based on a cluster-structure paradigm is presented for the recognition 
of 2-D partially occluded objects. This method uses the line segments which comprise 
the boundary of an object in the recognition process. The length of each of these 
segments as well as the angle between successive segments comprise the only 
information needed by the program to find an object's position. The technique is applied 
in several steps which include segment clustering, finding all sequences in one pass over 
the data, and final clustering of sequences so as to obtain the desired rotational and 
translational information. The amount of computational effort decreases as the 
recognition algorithm progresses. As compared to earlier methods, which identify an 
object based on only one sequence of matched segments, the new technique allows the 
identification of all parts of the model which match with the apparent image. These parts 
need not be adjacent to each other. Also the method is able to tolerate a moderate 
change in scale and a significant amount of shape distortion arising as a result of 
segmentation or the polygonal approximation of the boundary of the object. The method 
has been evaluated with respect to a large number of examples where several objects 
partially occlude one another. A summary of the results is presented.
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Recognition of partially occluded objects is of prime importance for industrial 

automation applications. The problem of occlusion in a two-dimensional scene 

introduces errors into many currently used vision algorithms which cannot be resolved. 

Occlusion occurs when two or more objects in a given image touch or overlap one 

another. In such situations vision techniques using global features to identify and locate 

an object fail because descriptors of part of a shape may not have any resemblance with 

the descriptors of the entire shape.

Because we know that occlusion will be present in all but the most constrained 

environments, other methods have been developed [1, 2, 4, 11, 13]. These techniques can 

be classified either as boundary based [2, 5, 13, 11] or using the local features (such as 

holes) if they are available [4]. Many of these techniques are computationally intensive. 

They can not handle significant distortion in the shape, change in scale, and do not give 

good matching results over a wide range of industrial objects. Some of these factors led 

Price [12] to use a conceptually simple technique to solve the occlusion problem by 

following the o rd er of matched segments. He uses a device called a disparity matrix to 

identify and follow the order of the boundary segments. Unfortunately, this method 

allows an object to be recognized by only one sequence of boundary segments that are 

matching in the image. No attempt is made to correlate several sequences of matched 

segments In order to determine a better matching of the model.

In order to overcome the factors which caused the Price method to fail, we have used a 

cluster-structure paradigm which provides information about the orientation and position 

of the objects in the image. Some techniques and structures used by Price have been 

retained, but the method of matching is entirely new.

1. In tro d u c tio n
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The experimental setup for recognizing occluded objects and their manipulation is 

shown in Figure 1. Before describing how the method works, we give a simple desription 

of the Price method and detail where the program fails. Following this section, a brief 

description of the general clustering concept is given, together with the details about how 

the results can be measured and controlled.

2. Earlier Methods

The Price technique proceeds in the following manner. Initially, the program assumes 

that we have a linear border approximation of a given model and an image. Price's 

method then compares every segment in the model with every segment in the image. If 

the segment pairs are compatible in terms of length and angle between successive 

segments, the rotational offset between the two segments is entered into the disparity 

matrix. The entry is indexed by the segment number in the model and the segment 

number in the image. If the segments are incompatible, the program places an error 

code at the appropriate location in the matrix. After all line segments have been 

compared, the matrix contains the offsets, or disparities, for all pairs of line segments. By 

traversing this newly formed matrix diagonally, the program finds the longest sequence in
• . 

the matrix that contains compatible entries. From this longest sequence, the Price 

method then computes the transform dictated by the segment pairs in the sequence. 

This value is the final result of the procedure.

Unfortunately, the Price technique is very expensive computationally. Since the program  

must treat every entry in the disparity matrix as a possible starting location, the program 

traverses the matrix once for every entry that exists. While this fact does not pose a 

very large problem in the simplest cases, matching takes a long time for models and 

images with more that about 20 or 30 segments each. Another major problem 

encountered by the Price procedure concerns the ability to use more than one sequence



in the overall matching of the model to the image. The program only uses the longest 

sequence found in the traversal because it cannot determine the compatibility between 

more than one sequence. In the cases where a large amount of occlusion is present, 

Price's technique will not be very successful. Thus, while Price's early attempt to solve 

the occlusion problem met with limited success, it did not fully deal with the problem.

3. Clustering Techniques
t ■;

Clustering, in its most general form, groups a set of objects into subsets where objects 

in a subset are more similar than the objects in other subsets [8, 9]. After every sample 

has its feature vector computed, the clustering technique (K-Means Algorithm) creates an 

arbitrary number of K cluster centers, into which all samples will be placed. In order to 

determine which center to place a given sample in, the program computes the distance 

from the sample to each of the cluster centers. This distance is merely the Euclidean 

distance from the sample to the center, using the values in the feature vector. The 

sample belongs to the cluster center which is closest to it. When every sample has been 

assigned to a unique cluster center, the program recomputes the value of each of the 

cluster centers. The new cluster center is the average of all samples which are currently 

in that cluster. After the new cluster centers have been determined, the program then 

redistributes all of the samples again, using the new centers this time. The process 

continues until no further changes take place in the location of the cluster centers. At 

that point, the samples in each of the clusters are then said to be compatible with each 

other. Thresholds help to determine when a cluster center becomes stationary, since 

most features are real numbers and will always change by a minute amount. Also, 

because the Euclidian distance may be affected by the choice of the features present in 

the feature vector, the feature values should always be normalized so that each feature 

contributes equivalently to the overall distance.



The only problem inherent in the clustering technique involves the choice of the number 

of cluster centers to be used at any given time. Since the choice depends on the 

structure of the data that is being clustered, the number of centers cannot usually be a 

constant value for every instance. This fact is probably more true in the computer vision 

environment than in in any other application. Depending on the lighting conditions, the 

segmentation techniques used, the amount of occlusion present, and many other factors, 

the number of cluster centers must be altered. Fortunately, there are measures which 

can be used to evaluate the success of the clustering with any given number of centers 

used [3, 6, 7, 10]. These performance measures determine the scattering of the samples 

within each individual cluster as well as the distance between each of the cluster centers 

themselves. This information is held in a matrix form known as a scatter matrix [9], The 

scattering of the samples in a particular cluster is defined as within-cluster scatter matrix, 

Sw. The overall position of all clusters in relation to each other becomes the between- 

cluster scatter matrix, Sb. By definition, the beta value for a certain clustering equals the 

trace of the within-cluster scatter matrix multiplied by the trace of the between-cluster 

scatter matrix, i.e., 0=Tr(Sw)Tr(Sb). As the number of clusters increases, the value of beta 

will reach a maximum and then slope towards 0. The number of clusters at which the 

value of beta is a maximum is the desired value and gives the best results. Thus, by 

setting the number of clusters to be one, clustering the samples, computing the beta 

value, comparing the beta value with its last value, and continuing until the maximal beta 

value is reached, the program can find the best number of clusters for any given problem.

The use of clustering and the performance measures in the body of the OCCLUSION 

program will be discussed in the next section. Because theses techniques can be quickly 

computed, even when the number of samples is very high, they allow the vision process 

to .b e  fast as well as accurate. The clustering method groups all sets of compatible 

matches into a single cluster, regardless of their position in the image. Thus, this



process can find multiple sequences in a model that may be matching in the given image. 

While the Price method was only able to find a single matching sequence, the new 

procedure will find as many sequences in the image as possible. Also, since the traversal 

of the matrices in Price's method took so much time, the new technique improves the 

speed of the vision process as well.

4. Algorithm Description

The OCCLUSION program uses some of the principles and techniques that were 

implemented by Price [12]. The disparity matrix structure has been kept as well as the 

method of finding sequences from a given set of points. These methods were used only 

because they are efficient and require little time. The program can be divided into the 

following main steps:

1) Determine D isparity Matrix
2) I n i t ia l  C lustering
3) Sequencing
4) F inal C lustering
5) Transform Computation

Figure 2 indicates the block diagram of the entire clustering algorithm while Figure 3 

shows the manner in wljich the number of cluster centers is selected. Each of these 

steps will be described individually in this section. The input to the program consists of 

two sets of data. The first set contains the object model data, which is a set of vertices 

that define the boundary of the model. This model is the object that we are searching for 

in the image. The second data set contains the description of the image that has been 

acquired. This data is also a set of vertices on the boundary that describe the scene that 

was taken by a video camera.

4.1 Determine Disparity Matrix

The first step of the program consists of the formation of the disparity matrix. This



matrix is identical to the matrix used in the Price algorithm [12]. From the set of vertices 

for the object and the image received by the program, the algorithm determines the 

segment length of each line and the angles between successive lines. At this point, 

every segment in the object model will be compared with every segment in the image. If 

the segment lengths and successor angles are compatible, the program computes the 

rotational and translational disparity between the pair of segments. The algorithm stores 

these values in the disparity matrix, indexing the values according to the segment number 

in the model and the image. This process proceeds until all segments have been 

compared. At this point, the disparity matrix appears exactly as it would in the Price 

method. However, since the values in this matrix will be used in the next step, they must 

be normalized first. The program determines the range of rotational and translation 

values present in the matrix, and then normalizes every value over their appropriate 

range. The normalized values are kept in a normalized disparity matrix, since the initial 

disparity matrix needs to be retained for later use.

The computation time required to complete this step comprises about 10 to 20 percent 

of the total execution time of the program. Since all of the values must be compared 

with each other, the exact percentage depends on the total number of segments present.

4.2 Initial Clustering

After all of the normalized values have been placed into the disparity matrix, the 

algorithm clusters these values. The initial number of cluster centers becomes one. The 

clustering proceeds as described in the previous section. At each step, the program 

clusters all of the samples, recomputes the value of the new cluster centers, and 

continues until none of the cluster centers change their positions. After computing the 

scatter matrix values for the current cluster results, the algorithm compares the current



beta value with the last beta value. If the value has decreased, then the previous beta 

value and the number of clusters become the final result of this processing step.

This step of the program takes the most computational time of all of the steps due to 

the large amount of samples that are clustered. For example, if the model contains 25 

segments and the image contains 100 segments, the disparity matrix will contain 2500 

entries. Out of this number, 1000 samples may be present. If the program has to cluster 

these samples 3 times until beta is maximized, 3000 distances must be computed. 

However, this amount of computation is far less than the comparable computation that 

would need to be done by the Price method.

After the number of clusters have been determined and the results are known for that 

particular value, the program selects the cluster with the largest number of samples. The 

data in this cluster will be used by the rest of steps in the algorithm to determine the 

location of the object. However, since some of the other clusters may contain 

approximately the same number of samples as the largest one, the program also uses any 

cluster which is within 20% of the largest cluster. Each cluster is considered separately 

and the final transform comes from the cluster which yields the highest confidence level. 

Thus, the program now passes each cluster that has been selected to the following 

algorithm steps, one at a time.

4.3 Sequencing

Since the clustering results provide no information concerning the physical structure of 

the model, this information must be provided at this time. Using the samples in the 

current cluster, the program finds all sequences in these samples. For instance, if the 

first sample indicates that segment 1 in the model matches segment 27 in the image 

(represented by the notation [1,27]), the program then searches for the pair [2,28], since



this pair should logically follow the first pair on the borders of the model and the image, 

respectively. Since there may be some missing and extra segments in the polygonal 

approximation of the model and the image as a result of segmentation and various other 

reasons, we allow up to 2 extra or 2 missing segments when locating the sequences. 

This procedure continues until all possible sequences have been located in the data of 

the current cluster. This step provides the only structural information within the 

algorithm and cannot be omitted.

Any samples in the current cluster which were not placed in any sequence should be 

discarded. Since these points are not members of any sequence, they usually represent 

the extraneous data present in many of the clusters. The program should also remove 

any sequences which have a segment count of less than three (Three segments comprise 

the basic local shape structure). This removal insures that arbitrary data included in the 

initial clustering and sequenced by the current step is not included in the final processing 

steps. Because of their small length, these sequences are assumed to be invalid. Even if 

the sequences did indicate valid matches, their removal from the set of sequences does 

not introduce any error into the final matching that will be computed.

The final task to be accomplished at this step in the algorithm is the computation of the 

rotational and translation averages of each sequence that has been located. These 

averages are merely the averages of all of the samples that are present in each sequence. 

These sequences and their averages will be used in the final clustering step of the 

program.

The sequencing step requires the second largest amount of execution time within the 

entire program. Since it is still very costly to check the possibility of a sequence 

occurring at any given point, the program must check every point in order to locate the



best choices. However, because the clustering results have greatly reduced that amount 

of choices that need to be checked, this step takes far less time than does the Price 

method. It is a one pass algorithm over the data.

4.4 Final Clustering

Using the sequences and the sequence averages obtained from the previous step, the 

algorithm clusters theses values to find those sequences which lead to the same 

rotational and translational results. As with the initial clustering, the program uses the 

iterative technique of clustering, evaluating, clustering, etc. After the value of beta has 

reached its maximum, the program again selects the cluster which contains the largest 

number of sequences and passes this cluster to the final program step.

While the initial clustering step had to deal with a large number of samples, this step of 

the program uses a trivial portion of the total program time. In almost all cases, the 

number of sequences will be less than 100, with an average somewhere near 10 to 20. 

Also, since the sequencing step has eliminated a good deal of the erroneous data, the 

beta value quickly reaches it maximum and this steps ends.

4.5 Transformation Computation

After all clusters which were selected have been sequenced and clustered a second 

time, the program determines the confidence level of the transformation determined by 

each cluster. The cluster with the highest confidence level is selected as the final 

transformation cluster. The program assembles the set of matched segments included in 

the sequences in this cluster. These segments should be sorted into increasing model 

segment number so that the sequences will indicate successive segments around the 

object boundary. The final output of the program is the rotation and the vertical and



horizontal translation necessary to locate the object model within the image. The 

program also produces a confidence level which indicates the likelihood that the final 

matching is correct. The confidence level is found by dividing the cumulative length of 

all segments in the final matching by the total length of all segments in the object model. 

So, if the confidence factor is 80/200, we are 40% sure of the program results. This 

factor will be used by later versions of the program to decide if further processing should 

be done in order to insure the proper results. Confidence levels of 10 percent or more 

usually lead to the correct transformation.

5. Experimental Results

For the purposes of this experiment, a group of tools shall be placed in a pile on the 

surface of a white table. A camera will take a picture of this scene, the image will be 

digitized, the objects will be located, and a robot will remove the tools from the pile and 

place them in a box at a predetermined location. See Figure 1.

The process of recognizing and manipulating the tools should proceed in the following 

manner:

1) Model S p ec ifica tio n
2) Image A cquisition  • '
3) Polygonal Approximation
4) Object Recognition .
5) Object Manipulation

Step number one should only need to be performed once for each tool which could be 

present in any of the images, while steps two through five will be performed once for 

each scene that is acquired. Each of these steps will be described separately in the 

following sections. However, the hardware needed for this system will be described first.

5.1 Hardware Requirements

10

The hardware requirements for the recognition system can be very simple or very
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complex, depending on the budget available to the user. The system described here 

assumes that the user has a limited budget and must work within these budget 

constraints. The hardware required may be divided into the following groups:

1) Camera and d ig it iz a t io n  equipment
2) Microcomputer for image processing
3) Robotic system for object manipulation

Each of these groups will be described individually in the paragraphs which follow. Figure 

1 shows the overall layout of each of the components described below.

Camera and Digitization Equipment: For the purpose of image acquisition and 

digitization, we shall use an Apple Macintosh computer equipped with a MacVision 

digitizer and a Panasonic black and white camera. The Macintosh computer has been 

chosen for the task of image acquisition due to the ease of use. of the Macintosh 

operating system as well as the portability of the unit. The MacVision digitizer and 

associated software is quite inexpensive and yields very good results in the form of a 

binary image. Gray level images are not available with this particular digitizer, although 

future versions should be equipped to produce them.

The camera will be mounted above the table on which the tools are placed and will 

remain stationary. Since the surface of the table is white, the necessary contrast 

between the object and the background should be achieved without much difficulty. If 

necessary, the lighting conditions of the room will be modified in order to correct any 

problems. The MacVision digitizer produces a binary image which can be saved onto 

floppy disk and then transferred to the microcomputer when necessary.

In order to provide a standard file format for the digitized picture, the images collected 

by the MacVision digitizer must first be converted to a MacPaint format. This file can 

then be easily transferred to the microcomputer in a very compact form. The file



transformation can simply be accomplished by loading the MacVision file into the 

MacPaint program directly and then saved back out to disk in the standard MacPaint 

format. The MacPaint format is fully described in Appendix II. This file will then be sent 

to the image processing computer with the use of a modem or with a dedicated line.

Microcomputer for Image Processing: Due to the facilities which are available to this 

experiment at the present time, the computer used for image processing will be a Vax

1 1/750. The MacPaint files will be transferred to this computer via modem or dedicated 

line. After the files have been received, the algorithms used to recognize and locate the 

objects in the image will be used to find the location of each of the tools. The output of 

the programs will be the location of each of the tools in the pile, assuming all of them  

have been recognized. This information will then be passed to a robotic system for the 

manipulation of the tools.

Robotic System for Object Manipulation: After the location of each of the objects has 

been determined by the image processing step, the robotic system will take this 

information and retrieve each of the tools. The tools will be placed in a box which will lie 

next to the table on which they are placed. The robotic system which is available for use 

in this experiment is a Puma 560 robot with the necessary software (VAL II) used to 

control the movements of the robot. This robot is interfaced with the Vax 11/750 

computer, so the transfer of object location information should be trivial.

5.2 Model Specification

In order to determine the ability of the program to find objects in an occluded scene, a 

set of 14 models was obtained and used in the matching algorithm. The models consist 

of a set of tools such as a hammer, screwdriver, pliers, wrench, and so on. The 

specification of the models of the tools which will be recognized is the most critical

12



portion of the experiment. Each tool should be placed on the table individually and the 

image of this scene should then be processed. The user may have interactive control 

over this process if necessary to achieve good results at this stage. The representation 

of the tool should be very clear and well defined in terms of the segments which 

represent the object.

After the model image has been received, and before the tool has been removed from  

its position on the table, the user must also teach the Puma robot the initial position of 

this tool on the table. This will be done by using the teach pendant of the Puma to 

specify an approach point to the object as well as the actual grasping point of the tool. 

Because occlusion may cause any given grasping point on the tool to be missing, the 

user should specify three or four different locations which could be used to pick up the 

tool.

The final model description of each tool will consist of the boundary representation of 

the tool as well as the position of each of the grasping points on the tool which could be 

used by the robot. The segments which determine the border of each of the tools are 

obtained using the same border approximation algorithms that are described in the image 

acquisition section below.

5.3 Image Acquisition and Transferal

With the use of a Macintosh computer and MacVision, a commercially available digitizer, 

the process of image acquisition and digitization has been greatly simplified. The 

MacVision digitizer uses a standard video camera as the video input to the system. The 

digitizer can adjust the size of the image which is seen, depending on the choice of the 

user. The default size of the image is 200 by 200 pixels. This picture is displayed in a 

window on the Macintosh screen. The second option is a full Mac screen display of the

13



video input. This image is 576 by 480 pixels in size. The time required to digitize the 

image depends on the size of the image chosen. For the smaller, window-sized image, 

the digitization time is approximately 5 seconds, while the full screen image takes about 

22 seconds to complete. The current implementation collects images using the full 

screen format. Obviously, this system is only useful for images that remain stationary for 

the duration of the image acquisition period. One drawback to using the full screen 

option is that MacVisiion distorts the image received from the camera due to the fact that 

it places a 512 by 512 image onto the 576 by 480 screen display. Thus, the image is 

stretched horizontally to some extent.

The image that is digitized by MacVision is saved onto the floppy disk of the Macintosh. 

To provide a standard format that can be decoded on the VAX computer, the MacVision 

file must first be converted to a MacPaint file. This is accomplished by loading the file 

into the MacPaint program using the standard open file command. Once the file has been 

loaded into MacPaint, the user must simply save the file out to disk again. However, this 

time the file is saved as a MacPaint file and can be decoded properly.

The MacPaint fjles that have been saved on floppy disk must be transferred to the Vax 

computer to finish the rest of the low level processing. This process is normally done 

using a modem connecting the Macintosh to the Vax. After all of the files have been 

loaded into the Vax, the remainder of the processing takes place on the mainframe. Thus, 

the Macintosh merely serves as a convenient image acquisition tool, suitable for a wide 

range of applications. Since the Macintosh is portable, it is also very useful in obtaining 

images that cannot be collected directly in a laboratory environment.

Comments: The procedure described above provides the user with a very simple, 

inexpensive way of obtaining images which can be used by the algorithms to accomplish



image analysis. The ease of use of the Macintosh user interface allows the user to 

collect a set of images in a very short time. The only drawback to image collection is 

the problem of lighting conditions needed by the MacVision system in order to provide a 

high contrast image. The images collected for this set of examples were obtained by 

using backlighting, which provides a very sharp contrast between the objects in the 

image and the background. Since the polygonal approximation step processes the 

MacPaint image directly, the quality of the image must be very good. Otherwise, the user 

may need to perform some pre-processsing of the image in order to obtain the 

necessary image quality or to use more elaborate segmentation techniques.

> ' u-iYi
5.4 Polygonal Approximation

Once the image file exists in the Vax computer, the remaining processes are all 

completed using the available facilities. In order to create the border segments which 

comprise the outline of the objects in the image, the images undergo the following steps:

1) Data Decompression
2) Object Border Location
3) I n i t ia l  Border Approximation
4) F inal Border Approximation

Each of these steps is now described. '

Data Decompression: The first processing step that must take place is to decode the 

information in the MacPaint file which has been uploaded from the Macintosh. The data 

in the file is compressed and must be expanded in order to obtain the pixel values 

needed by the remainder of the program. The decompressed size of the MacPaint image 

is 720 rows by 576 columns. See Appendix II for a complete description of the MacPaint 

file format. After the file has been decoded, the pixel values of 0 or 1 are stored in a 

character array of 720 by 576. T *

15



Object Border Location: In order to locate and represent the tools that are in the 

image, the program must first locate the border of the objects in the image. This is 

accomplished using a simple border following algorithm that follows and marks the 

border (8-connected) of the object in a clockwise direction within the image. Once the 

border following algorithm locates the borders of objects in the image, the remainder of 

the program operates only on the pixels that lie on this border.

The number of boundary points for the models range from 567 to 1425 pixels, while the 

number of boundary points in the occluded images vary from 1123 to 4025.

Initial Border Approximation: After the borders of the objects have been located, the 

program determines a rough polygonal approximation of the object by finding the points 

along the boundary that have the largest local curvature maximas. This is done by first 

computing the curvature for every point along the boundary of the object. Once these 

values have been determined, the program uses a smoothing factor to select the points 

on the boundary that have the maximum local curvature. The smoothing factor is used to 

control the minimum distance that these curvature maxima points must be from each 

other. Experience has shown that the smoothing factor must be a value between 6 and 

26. Smoothing factors above or below this range give results which are either too coarse 

or too fine, respectively. Another important point to note is that smaller smoothing 

factors, which give better approximations at this stage, lead to a rougher approximation 

after the final stage of low level processing. For instance, in one case a model was run 

with a smoothing factor of 8 and the final border approximation contained 24 points. 

When the same model was run with a smoothing factor of 24, the final approximation had 

32 segments. This apparent contradiction has to do with the split-merge algorithm's 

ability to reduce the total error of the approximation, based on the initial approximation of 

the object which is received. This factor will be discussed further in the next section.

16



A smoothing factor of 8 was selected for the models in these examples, while the 

images were processed with a smoothing factor of 24 to insure a good polygonal 

approximation of the occluded scenes. The initial border approximations for the models 

range from 18 to 52 segments in length. The images contain from 21 to 71 initial 

segments.

Final Border Approximation: This stage is the last step of the low level processing. 

The input consists of the border points found in the border following step as well as the 

initial border approximation that was found using the curvature maxima algorithm. The 

program uses the split-merge algorithm to refine the curvature maxima approximation 

and also makes any end point adjustments that lead to a smaller total approximation error 

for the object.

The split-merge algorithm first takes all of the curvature maxima points and places 

these values into a linked list so that changes to the border can be quickly updated. The 

next step is to compute the error associated with each line segment in the initial 

approximation. The sum of the individual segment errors yields the total approximation 

error of the curvature maxima results. Once these values are known, the split-merge 

algorithm proceeds as follows: .

Step 1 -  After computing the pointwise error for every segment in the initial 

approximation, split the segment with the largest error into two segments and compute 

the new error for each of these segments. Continue to split the segments with largest 

error until the total error falls below some specified error value. This value is referred to 

as the m axim um  e rro r  value.

17

Step 2 -  Repeat steps 2a and 2b until no further merges or adjusts take place:



Step 2a: Compute the error that would result if adjacent segments on the object 

boundary were combined together. Select the segment combination which causes the 

total error to remain below the m axim um  e rro r value and also causes the smallest 

increase in total error and merge these segments together. Compute the resulting total 

error.

Step 2b: Compute the error that would result if each border approximation point were 

shifted one border location to the left or to the right. If any of these shifts lead to a 

decrease in the total error, shift the point accordingly. Compute the resulting total error.

Unfortunately, it is very difficult to determine the appropriate value for the m axim um  

e rro r for a wide range of differing examples. Attempts were made to relate the m axim um  

e rro r to the number of boundary points, the number of initial approximation points, or the 

initial value of the total approximation error. While these attempts proved successful in a 

small portion of the examples, none appeared to work well for every example. This fact 

is due primarily to the wide range of initial approximations produced by the curvature 

maxima step. For a given low value of the maximum error if the approximation is very 

good to begin with, the splitting step from above will have to split a la rg e  num ber of 

segments in order to substantially reduce the level of the approximation error. 

Conversely, if the approximation is very bad, splitting may not lead to a polygonal 

approximation with the necessary resolution for matching.

In order to overcome this problem, one has to closely examine the reduction in total 

error as the split procedure splits a given approximation of an object. Assume that the 

approximation is initially too coarse, which is achieved with a larger smoothing factor. As 

the split procedure splits the segments with the largest error, the total error value is 

quickly reduced. However, the splitting procedure eventually reaches a point at which any
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further splits cause only a very slight decrease in the total error, or which in some cases 

may lead to a very small increase in the total error, due to the structure of the data being 

approximated. Once this point has been reached, the use of any more splitting to achieve 

a better approximation is somewhat futile. Therefore, the program decides to stop 

splitting when it has counted 20 of these very slight increases in the total error value. At 

this point, the value of the m axim um  erro r is assigned to be the total approximation error 

of the current representation. The rest of the split-merge algorithm proceeds as 

described in step 2 in the above description.

Since the amount of splitting depends on the initial approximation of the object given 

by the curvature maxima algorithm, the selection of the appropriate smoothing factor is 

crucial in obtaining the best results from the split-merge algorithm. For example, if the 

smoothing factor is very low, the amount of splitting to be done will be quite small. 

However, since the curvature maxima approximation may not always be a good 

representation of the object, split-merge may not produce the best results. This is why 

the smoothing factor is set at a relatively high value so that the split-merge procedure 

can refine the representation in the appropriate manner.

The final output of the polygonal approximation step is the list of boundary 

approximation points (vertices) which split-merge produces. This list of points is written 

to a data file, which is used by the clustering algorithm in the matching process.

The final number of border segments received from the split-merge procedure range 

from 5 to 33 segments for the models and 26 to 71 segments for the occluded images.

Figure 4 shows the images collected for the 14 models used in this experiment. Figure

5 depicts the final polygonal approximation for each of these models produced by the 

split-merge algorithm. Figure 6 indicates, in chart format, some of the important values
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and data created in the polygonal approximation step for the models collected. Similarly, 

Figures 7, 8, and 9 show the polygonal approximation results for the 20 images that were 

used for the experiment. Tables 1 and 2 summarize the numerical data from the models 

and the images, respectively.

Comments: The image processing algorithms described above provide a very good 

approximation of the images that we have collected. As noted earlier, the smoothing 

factor is the only critical parameter that must be adjusted in order to obtain the proper 

resolution in the object representation. Experimental use of this parameter is the best 

means of determining the proper value for any given application.

Overall, the program has given very good results for the examples that we have used. 

Although the execution speed is not exceptionally good, the algorithms could very 

possibly be implemented in VLSI, which would allow the programs to work in a much 

shorter time.

5.5 Model Based Recognition

Once all of the models and images have been collected, the clustering algorithm can 

then be used to locate the models in the images. When the clustering program was run 

on the 20 images that were collected, the results were very good. Of the 56 models 

present in these images, 40 (71%) models were correctly matched. 4 of the 56 models 

were mistakenly matched to a different model. The remaining 12 model instances could 

not be matched.

Figure 10 shows the matching results for the twenty images that were shown in Figure

7. Solid red lines show the polygonal approximation of the images using the split-merge  

algorithm. The blue and green dotted lines show the polygonal approximation of the



model at its matched location in the image. The green lines indicated the segments 

which were matched while the blue lines show the segments which did not contribute to 

the matching. Figure 11 indicates the results of the matching in graph format. Tables 3 

and 4 summarize the actual verses experimental transformation values and the overall 

matching results, respectively.

Execution times for the clustering method range from .5 to 3.2 seconds. The confidence 

levels for the matched objects vary from 0 to 98%. The error analysis of the matchings 

which were correct yield a mean rotational error of -0.14 degrees and a standard 

deviation of 8.68 degrees. The mean translational errors are -11.83 and -7.65 pixels for x 

and y, respectively. The standard deviations of these values are 57.41 and 44.79.

5.6 Improved Model Performance

Of the 12 models that were not located in the images, the failure to find these objects 

is due to the substantial difference in the polygonal representations of the particular tool 

in the model and in the image. When the polygonal approximations of the object become 

too diverse, clustering is not able to overcome this problem. However, if the 

representation of the model is improved within the image, matching will occur and the 

transformation determined by the program will be better. This fact is readily seen in 

Figure 12. The model for the wrench (Fig. 4(g)) has been modified to correspond more 

closely to its representations in the images shown. Notice that the wrench matches in 

every image now and that the transformations that have been computed are better than 

the transforms obtained with the initial representation of the model.

In order to determine the ability of the clustering algorithm to perform on models and 

images with a large number of boundary segments, the program was run using some 

hand generated examples of some tools. The polygonal approximation of a screwdriver, a
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pair of pliers, and an occluded image containing the two tools was manually created. 

These examples are shown in Figure 13. The results of the clustering algorithm on these 

examples is presented in Figure 14. The screwdriver and the first representation of the 

pliers have been correctly matched. However, the second representation for the pliers 

has been incorrectly matched, as shown in Figure 14(c).

5.7 Comparison with Price Method

To contrast this new method with Keith Price's earlier work, we have run Price's 

algorithm on several of the examples used above. Figure 15 shows the results of this 

matching, which can be compared with the clustering results in Figure 10. The clustering 

method, which obviously yields far better results, also finds the matches in much shorter 

time. The model transformations also tend to be better because clustering can find 

several sequences along a boundary which may contribute to the final transformation. 

Price's method, on the other hand, may only select the longest sequence. Figure 16 

indicates the results of the Price algorithm on the hand generated examples in Figure 13. 

Note that the algorithm was not able to match the second representation of the pliers at

all. * .
’ . . - ■ . ... .. .- - ,■ - * ■ ' *

5.8 Object Manipulation

After the transformation of each of the tools have been determined, this information will 

be sent to the Puma robot. Since the robot already knows the initial location of each tool 

from the model specification stage, the rotation and translation values can be used 

directly in a simple coordinate transformation to find the actual location of the tools on 

the table. Using a list of the segments which were matched in the image processing 

stage, the Puma can decide which of the grasping points can be used to grab the tool. 

Some simple tactile sensing can also be employed in order to insure that the tool has
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indeed been grasped. After each of the toots has been removed, they will be placed in a 

box at another predetermined location near the table. This final step of the experiment is 

currently underway. We are awaiting some final pieces of hardware in order to fully 

interface the Puma robot with the Vax computer. •

b ■->

6. Conclusions and Future Modifications

The cluster-structure paradigm allows the problem of occlusion to be easily 

compensated for and overcome. Since the clustering technique does not limit itself to a 

single sequence of line segments on the border of an object, the program can locate all 

of the matched segments of the model, which accounts for the high success rate. 

Although the program was not highly successful in the instances of severe occlusion, 

even the human interpreter would have problems locating some objects within these 

images. j-., *■>

Applications of this method will be limited to areas in which the environment can be 

partially constrained, since lighting conditions tend to be the most critical. However, 

most industrial applications in which vision is presently used already have this constraint 

applied. No further adaptations within the working environment should be necessary to 

allow this new technique to be used.

Future modifications to this algorithm will include the ability of the program to handle 

the situations when the model has a large amount of symmetry, so that the possible 

transform could be two completely equal values, both of which are correct. These 

problems are currently being investigated.
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This appendix provides a detailed description of the Price technique for occluded image 

vision processing. The algorithm is divided into 5 major divisions, which are indicated 

below. The English-style pseudo-code which follows describes the flow of the Price 

algorithm as we have implemented it.

#1. Program I n it ia l iz a t io n .

1a. Set a l l  threshold values and graphics parameters to th e ir  
d efa u lt va lu es.

1b. Input the program mode from the user at the term inal.
1c. Input the graphics ca p a b ility  from the user a t the term inal.
1d. Print the main menu for the u ser. Retrieve menu ch o ice.
1e. I f  algorithm  com plexity option i s  chosen, process user input 

as to choice o f  com plexity and s e t  the g lobal fla g  accord in gly .
Read in the value o f the number o f s ta r tin g  points for matrix 
tr a v e rsa l, i f  necessary for the given input ch oice.

1f. I f  algorithm  parameters option i s  chosen, process user input
as to choice o f parameter and assign  parameter to the input va lu e.

1g. I f  graphical parameters option i s  chosen, process user input
as to choice o f  parameter and assign  parameter to the input va lu e.

1h. I f  e x i t  option i s  chosen, is su e  UNIX system e x it  command and 
h a lt  program execu tion .

1 i. I f  choose data f i l e s  option i s  chosen, proceed to step  #2.

#2. S e le c t  and Process Data F i le s .

2a. Input the model data f i l e  name from the user.
2b. Attempt to open "filenam e.seg" f i l e .  I f  no error, read f i l e  data.
2c. I f  error in 2b, attempt to open "filenam e.pts" f i l e .  I f  no 

error , read f i l e  data. E lse , ask user to input new f i l e  name 
or enter data from the term inal.

2d. Repeat s tep s 2a-2c for the apparent image data f i l e  name.
2e . I f  .p ts  f i l e  was read for the model image, determine the fo llow ing:

i )  Segment length between consecutive poin ts in the data, 
i i )  Angle between current segment and next clockw ise segment.

Store th is  data and a lso  save the data in the f i l e  '•filenam e.seg".
2 f .  Repeat step  2e for the apparent image, i f  necessary.

#3* Determine I n i t ia l  D isparity  Matrix and I n i t ia l  Transforms.

. 3a. Compare every segment in  the model data with every segment in  
the apparent image data. I f  the length and the apparent image 
thresholds are met, enter o r ien ta tio n  d ifferen ce  in  the matrix

I. A p p e n d ix  - D e ta ile d  P rice  A lg o r ith m
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indexed according to segment number. I f  thresholds are not 
met, enter error number (value < 0 ) .

3b. I f  tra v ersa l model = exhaustive, then for every value in  the 
matrix > 0 , use that lo ca tio n  as the s ta r tin g  point and do 
the fo llow in g: (Loop e x it s  when current row number becomes 
row number o f the s ta r tin g  point)

i )  I f  the current lo ca tio n  i s  > 0 and the threshold  
between the present value and the s ta r tin g  point 
value i s  met, enter the lo ca tio n  o f  the point into  
the matched segments array. Step down and to the 
r ig h t in  the matrix by one and goto step  i .

i i )  Otherwise, step  one p o s itio n  to the l e f t ,  or one 
p o s itio n  up, or two p o sitio n s to the l e f t ,  or two 
p o s itio n s  up, u n til a value meeting the same c r it e r ia  
as above i s  found. When found, enter the lo ca tio n  o f  
the point in to  the matched segments array. Step down 
and to the r ig h t and goto step  i .

3c. Otherwise, i f  length  option was chosen, so rt model segments 
according to len g th . Use the lon gest segment as the s ta r tin g  
point for tra v ersa l and goto 3b. Repeat with next longest 
u n t il  the number o f  s ta r tin g  poin ts defined by the user = 0.

3d. Otherwise, i f  predecessor angle option was chosen, so rt the 
model-apparent image segment pairs according to the d ifferen ce  
between predecessor an g les. Use sm allest d ifferen ce  segment 
lo ca tio n  as the s ta r tin g  point for traversa l and goto 3b.
Repeat with the next sm allest u n til  number o f  s ta r tin g  points 
defined by the user = 0 .

3e. Determine the lon gest matched segment in  the matched segment 
array. Compute the i n i t i a l  transform from th is  segment by 
the following:* ,

i )  The ro ta tio n  equals the value entered in  the matrix a t 
the lo ca tio n  o f  the matching p a ir .

i i )  The x and y tra n sla tio n s  equal the average d ifferen ce  
between the endpoints o f  the current segment and i t s  
match a fte r  ro ta tin g  the segment by the value from i .

i l i )  Transform the en tir e  model image according to the values 
from i  and i i .  Store the new image.

3 f . Repeat 3e for the second longest matched segment.
3g. Segment the new image data as in 2e. Store th is  data a lso .

#4. Transformation Refinement.

4a. Compare every segment in the new model with every segment in  
the apparent image. I f  the p o sitio n  threshold i s  met, enter 
the r a tio  o f  p o s it io n a l d ifferen ce  over combined segment length  
in to  the new matrix indexed according to segment number. I f  n ot,
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enter the error code (value < 0 ) .
4b. For every value in  the new matrix > 0 , use that lo ca tio n  as the 

s ta r t in g  point and do the fo llow ing: (Loop e x it s  when current 
row number becomes row number o f  s ta r tin g  point) 

i )  I f  the current lo ca tio n  i s  > 0 , enter the
lo ca tio n  o f the point in to  the matched segments 
array. Step down and to the r ig h t in the matrix 
by one and repeat,

i i )  Otherwise, step  one p o s itio n  to the l e f t ,  or one 
p o s itio n  up, or two p o s itio n s  to the l e f t ,  or two 
p o s itio n s  up, u n til  a value meeting the same c r it e r ia  
as above i s  found. When found, enter the lo ca tio n  of 
the point in to  the matched segments array. Step down 
and to the r ig h t and goto step  i .

4c . Repeat 4a-4b for the second new model from step  3*
4d. The matched segments array contains the f in a l s e t  o f  matching 

segments computed by the algorithm .

#5. Evaluating the R esu lts.

5a. I f  the r a tio  o f the number o f segments matched from #4 
over the to ta l  number o f segments in  the model i s  greater  
than the confidence threshold , goto 5b. Else goto 5d.

5b. Determine the lon gest matched segment in the matched segment 
array. Compute the f in a l  transform from th is  segment by 
the fo llow in g:

i )  The ro ta tion  equals the i n i t i a l  value o f the ro ta tion  
plus the o r ien ta tio n  d ifferen ce  o f the lon gest segment 
with resp ect to i t s  matching segment in  the apparent 
data.

i i )  The x and y tra n sla tio n s  equal the average d ifferen ce  
between the endpoints o f the current segment and i t s  
match a fte r  ro ta tin g  the segment by the value from i .

i i i )  Transform the e n tir e  model image according to the values  
from i  and i i .  Store the f in a l  image.

5c . D isplay the graphics or the data menus to allow  the user to 
view the f in a l  data. When the user s e le c t s  the qu it op tion , 
goto 5d.

5d. R e in it ia l iz e  a l l  g lob al v a r ia b le s . Goto #1.



MacPaint documents use only the data fork of the file system; the resource fork is not 

used and may be ignored. The data fork contains a 512 byte header and then the 

compressed data representing a single bitmap of 576 pixels wide by 720 pixels high. At 

72 pixels per inch, this bitmap occupies the full 8x10 inch printable area of the 

Imagewriter printer page.

Header: The first 512 bytes of the document form a header with a 4 byte version 

number (default=2), then 38*8=304 bytes of patterns, then 204 unused bytes reserved for 

future expansion. If the version number is zero, the rest of the header block is ignored 

and default patterns are used, so programs generating MacPaint documents can simply 

write out 512 bytes of zero as the document header. Most programs which read 

MacPaint documents can simply skip over the header when reading.

Bitmap: Following the header are 720 compressed scanlines of data which form the 

576 wide by 720 high bitmap. Without compression, this bitmap would occupy 51840 

bytes and chew up disk space pretty fast; typical MacPaint documents compress to about 

10 Kbytes using the PackBits procedure in the Macintosh ROM to compress runs of equal 

bytes within each scanline. The bitmap part of a MacPaint document is simply 720 times 

the output of PackBits with 72 bytes input.

If the bitmap is to be decompressed without using the PackBits procedure in the 

Macintosh ROM, the following procedure may be used:

27
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Any run of three or more equal bytes is compressed into a count byte and a single data 

byte. Runs of unequal bytes are passed on literally, preceded also by a count byte.

<count b y tex d a ta  byte> . . .  count = — 1 . . .  — 127 —>

r e p lic a te  byte 2 . . .1 2 8  times

<count b y te x n  data bytes> . . .  count = 0 . . .1 2 7  —>

copy 1 . . .  128 bytes uncompressed
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S t o r a g e  B o x

F ig . 1 System diagram for the recognition of 2-D occluded objects 
and the ir manipulation by PUMA 560 robot.
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(a ) (b)

(c) (d )

(e )

F ig . 10 Results of matching for the occluded images shown in F ig . 7 
(a to t ) .  So lid  red lin es show the polygonal approximation 
of the images using a split-merge algorithm. Dotted lin es 
(in  blue and green co lors) show the model (polygonal 
approximation), when ro tationa l and tran slationa l transforms 
computed by the algorithm are applied to i t .  Green color of 
the dotted lin es shows the actual segments which matched.
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F ig . 10 (Continued)



10 (Continued)



No. of Disparity 
Samplas

No. of Initial 
Clusters

Disparity Matrix Siza

(a ) D isparity matrix sparsity

Disparity Matrix Size

(b) D isparity matrix vs. number of in it ia l  clusters

F ig . 11 Performance charts for the recognition algorithm (a to g ).
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No. of Thinned 
Sequences

Confidence Level
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(e ) D isparity matrix vs. number of thinned sequences

Disparity Matrix Siza

( f )  D isparity matrix vs. confidence le ve l
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Disparity Matrix Sizt

(g) D isparity matrix vs. execution time
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(c ) (d )

(e )

F ig . 12 Results of matching using the improved polygonal approximation 
for the model wrench in  F ig . 4 (g ). F ig s. 12(a), 12(b), 12(c), 
12(d), and 12(e) correspond to F ig s. 10(b), 10(c), 10(d), 10(e), 
and 10(t) respective ly. Note that the matching resu lts are 
superior to the resu lts in  F ig . 10.



(a )

(c )

(b)

(d )

F ig . 13 Three models (a-c) and occluded image (d ) generated by hand to 
demonstrate algorithm performance using models with a large 
number of boundary segments.



Fig . 14 Results of matching models in  F ig . 13. F igs. (a ) - (c ) 
correspond to F igs. 13(a) -13(c).



(a )

(b)

F ig . 15 Results o f matching using the P rice  algorithm . F igs. 15(a), 
15(b), and 15(c) correspond to F igs. 10(a), 1 0 (j), and 10(s) 
respective ly .



(a )

F ig . 16 Results o f matching using the Price  algoritha on the hand 
generated examples in F ig . 13* F igs. (a ) -(c) 
correspond to F igs. 13(a) -13(c).



L i s t  o f  F ig u r e s

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

F i g .  1

Fig. 7 

Fig. 8 

Fig. 9

F i g .  10

System diagram for the recognition of 2-D occluded objects 
and their manipulation by PUMA 560 robot.

Block diagram of the clustering based occlusion algorithm.

A clustering quality measure.

Images of the object models (a to n).

Polygonal approximation of the object models (a to n).

Polygonal approximation performance charts for the models (a to j),

(a) Model boundaries
(b) Model segments - initial
(c) Model segments - final
(d) Model segments - initial vs final
(e) Model segments - initial vs error maximum
(f) Models - Mo. of splits, merges, and adjusts
(g) Models - execution time
(h) Models - curvature data
(i) Models - initial error 
(j) Models - maximum error

Images of the occluded objects (a to t).

Polygonal approximation of the occluded objects (a to t).

Polygonal approximation performance charts for the occluded 
objects (a to j).

(a
(b
(c
(d
(e
(f
(g
(h

(i
(j

Image boundaries
Image segments - initial
Image segments - final
Image segments - initial vs final
Image segments - initial vs error maximum
Images - Mo. of splits, merges, and adjusts
Images - execution time
Images - curvature data
Images - initial error
Images - maximum error

Results of matching for the occluded images shown in Fig. 7 
(a to t). Solid red lines show the polygonal approximation 
of the images using a split-merge algorithm. Dotted lines 
(in blue and green colors) show the model (polygonal 
approximation), when rotational and translational transforms 
computed by the algorithm are applied to it. Green color of 
the dotted lines shows the actual segments which matched.



Fig . 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Performance charts for the recognition algorithm (a to g).

(a) Disparity matrix sparsity
(b) Disparity matrix vs. number of initial clusters
(c) Disparity matrix vs. cluster size
(d) Disparity matrix vs. number of initial sequences
(e) Disparity matrix vs. number of thinned sequences
(f) Disparity matrix vs. confidence level
(g) Disparity matrix vs. execution time

Results of matching using the improved polygonal approximation 
for the model wrench in Fig. 4(g). Figs. 12(a), 12(b), 12(c), 
12(d), and 12(e) correspond to Figs. 10(b), 10(c), 10(d), 10(e), 
and 10(t) respectively. Note that the matching results are 
superior to the results in Fig. 10.

Three models (a-c) and occluded image (d) generated by hand to 
demonstrate algorithm performance using models with a large 
number of boundary segments.

Results of matching models in Fig. 13. Figs. (a) -(c) 
correspond to Figs. 13(a) -13(c).

Results of matching using the Price algorithm. Figs. 15(a), 
15(b), and 15(c) correspond to Figs. 10(a), 10(j), and 10(s) 
respectively.

Results of matching using the Price algorithm on the hand 
generated examples in Fig. 13- Figs. (a) -(c) 
correspond to Figs. 13(a) -13(c).



T a b le  1 M o d e l p o ly g o n a l  a p p r o x im a t i o n  s u n m a r y .

t e r  F o l l o w  R e s u l t s :

Boundary Points: Minimum:
Maximum:
Average:
Median:
Std. Deviation:

C u r v a t u r e  M a x i m a  R a s i i l t s -

No. of Initial Segments: Minimum:
Maximum:
Average:
Median:
Std. Deviation:

Initial Approximation Error: Minimum:
Maximum:
Average:
Median:
Std. Deviation:

S p U t - M e r a e  R e s u l t s :

Error Maximum Value: Minimum:
Maximum:
Average:
Median:
Std. Deviation:

Number of Splits: Minimum:
Maximum:
Average:
Median:
Std. Deviation:

567
1425
870
867
287

18
52
32
34
12

20.9
151.0
53.0
43.7
38.3

3.7 
17.3
9.2
7.7
4.3

2 2

52
39
41

9



T a b le  1 ( C o n t i n u e d )

Number of Merges:

Number of Adjusts:

No. of Final Segments:

Execution Time (seconds):

Minimum:
Maximum:
Average:
Median:
5td. Deviation:

Minimum:
Maximum:
Average:
Median:
5td. Deviation:

Minimum:
Maximum:
Average:
Median:
5td. Deviation:

Minimum:
Maximum:
Average:
Median:
5td. Deviation:

30
72
53
50
14

5
8 6

43
46
24

5
33
18

17
6

34.9
75.5
45.8
41.9 
12.7



T a b le  2  Im a g e  p o ly g o n a l  a p p r o x im a t i o n  s u m m a ry .

B o r d e r  F o l l o w  R e s u l t s :

Boundary Points: Minimum:
Maximum:
Average:
Median:
Std. Deviation:

C u r v a t u r e  R e s u l t s -

No. of Initial Segments: Minimum.
Maximum:
Average:
Median:
Std. Deviation:

Initial Approximation Error: Minimum:
Maximum:
Average:
Median:
5td. Deviation:

S p l i t - M e r g e  R e s u l t s :

Error Maximum Value: Minimum.
Maximum:
Average:
Median:
Std. Deviation:

Number of Splits: Minimum:
Maximum:
Average:
Median:

• Std. Deviation:

1123
4025
2137
2130
728

21
71
35
34
13

70.6 
1200.7 
466.3 
523.8 
317.1

15.1

58.8
24.8 
23.7 
10.6

31
94
53
51
15



T a b le  2  ( C o n t i n u e d )

Number of Merges:

Number of Adjusts:

No. of Final Segments:

Execution Time (seconds):

Minimum: 32
Maximum: 73
Average: 50
Median: 48
Std. Deviation: 14

Minimum: 42
Maximum: 254
Average: 100
Median: 90
Std. Deviation: 47

Minimum: 26
Maximum: 71
Average: 38
Median: 37
Std. Deviation: 12

Minimum: 51.2
Maximum: 182.3
Average: 94.3
Median: 85.6
Std. Deviation: 32.3



Table 3 True verses experimental transformation values.

True Values Experimental Values Error
Image Model Translation Translation Translation
Name Number Rot. X Y Rot. X Y Rot. X Y

Image 1: Model 1 165.5 638 390 167.0 638 393 -1.5 0 -3
Model 6 166.25 584 440 167.5 581 445 -1.25 3 -5

Image 2: Model 6 125.25 624 108 121.8 615 98 3.45 9 10
Model 7 33.25 169 -87 33.2 166 -82 .05 3 -5

Image 3: Model 4 283.5 62 436 — — — — — —

Model 6 184.0 545 473 180.7 540 433 3.3 5 40
Model 7 88.0 508 -1 120.0 549 223 -32.0 -41 -■224

Image 4: Model 7 113.75 674 35 123.3 681 104 -9.55 -7 -69
Model 12 275.25 88 534 — -- -- — — — — — — — — —

Image 5: Model 4 91.0 508--106 92.8 510 -90 -1.8 -2 -16
Model 7 251.5 175 598 262.1 131 531 -10.6 44 67_
Model 12 297.0 -81 469 — -- -- * -- —— —

Image 6: Model 2 77.5 402 -144 78.4 395 -133 -0.9 7 -11
Model 3 184.25 552 523 183.6 553 516 0.65 -1 7

Image 7: Model 2 266.5 94 471 — — — — — —

Model 3 182.0 557 518 175.5 581 488 6.5 -24 30
Model 8 240.0 314 689 238.5 321 685 1.5 -7 4

Image 8: Model 3 3.0 29 -11 ' —_ -— ■ _—• —  • _—■—

Model 9 228.25 271 594 227.1 271 594 1.15 0 0

Image 9: Model 9 226.75 358 622 195.2 581 549 31.55 -223 73
Model 14 85.0 488 -106 88.6 514 -83 -3.6 -26 -23

Image 10: Model 9 335.0 -63 162 336.9 -56 152 -1.9 -7 10
Model 12 258.5 115 483 258.6 120 487 -0.1 -5 -4
Model 14 94.0 618 -74 94.1 622 -72 -0.1 -4 -2

Image 11:: Model 8 181.5 651 484 — — — — — —

Model 10 86.25 540 -64 79.1 459 -67 7.15 81 3
*

Model 12 260.0 131 510 --- --- --- --- ---

Image 12: Model 6 45.75 223 -78 57.3 328 -62 -11.55 -105 -16
Model 13 191.75 547 532 192.9 544 533 -1.15 3 -1



T a b le  3  ( C o n t i n u e d )

True Values Experimental Values Error
Image Model Translation Translation Translation
Name Number Rot. X Y Rot. X Y Rot. X Y

Image 13: Model 12 27.5 197 -100 — — — — — —

Model 13 229.0 277 607 299.2 73 360 -70.2 204 247

Image 14: Model 2 75.5 425 -148 75.5 412 -135 0.0 13 -13
Model 12 315.25 47 280 — — — — — ---- --

Model 13 190.0 548 587 197.4 512 616 -7.4 36 -29

Image 15: Model 4 297.0 32 362 299.1 32 349 -2.1 0 13
Model 8 286.75 -2 497 284.7 2 500 2.05 -4 -3

Image 16: Model 4 103.0 602 -17 98.8 576 -38 4.2 26 21
Model 8 266.5 61 620 124.2 715 111 142.3 -654 509
Model 14 329.75 -207 162 263.5 29 653 66.25 -236 -491

Image 17: Model 2 258.5 102 529 235.8 186 437 22.7 -84 92_
Model 8 351.0 10 27 — — — — ■— — =
Model 14 273.0 55 591 272.3 53 594 0.7 2 -3

Image 18: Model 3 307.75 -79 299 301.8 -41 347 5.95 -38 -48
Model 9 251.0 145 657 255.1 135 642 -4.1 10 15
Model 10 272.25 -18 466 257.1 218 496 5.15 -236 -30
Model 12 48.75 213 -214 ------- ------- ------- ------- ------- -------

Image 19: Model 3 5.5 31 -19 1.5 5 -13 4.0 26 -6
Model 4 35.0 70 -126 33.1 66 -120 1.9 4 -6
Model 9 246.75 135 699 250.5 115 692 -3.75 20 7
Model 10 241.0 278 545 242.7 269 546 -1.7 9 -1
Model 12 66.25 416 -49 66.1 414 -47 0.15 2 -2

Image 20: Model 1 178.0 599 524 179.0 594 526 -1.0 5 -2
Model 6 43.75 229 -183 44.6 242 -187 -0.85 -13 4
Model 7 286.25 18 342 — — — — — —

Model 9 339.0 -196 119 323.8 -174 200 15.2 -12 -81
Model 12 89.0 565 -26 92.1 591 -19 -3.1 -26 -7



T a b le  4  R e c o g n i t i o n  p e r f o r m a n c e  su m m a ry .

M o d e l s

N o .  o f  

O c c u r e n c e s  

i n  I m a g e s

R e c o g n i t i o n  P e r f o r m a n c e

1 0 1 2 1 3 1 4

M o d e l  1 2 ( 0 )

M o d e l  2 4 ( 2 )

M o d e l  3 5 ( 1 )

M o d e l  4 5 ( 1 )

M o d e l  6 5 ( 0 )

M o d e l  7 5 ( 1 )

5 ( 2 )

M o d e l  9 6 ( 0 )

M o d e l  1 0 3 ( 0 )

M o d e l  1 2 9 ( 6 )

M o d e l  1 3 3 ( 0 )

M o d e l  1 4 4 ( 0 )

This chart indicates the number of times that each of the 
models appears in the images. The recognition performance 
values indicate what each of the models matched in these 
images. For instance, row 1 indicates that model *1 appears 
twice in the images, and in both cases it has been recognized 
as model *1. On the other hand, model *8, which appears in 
the images 5 times, was mistakenly matched to model *4 in 
one case, was correctly matched 2 times, and was not matched 
at all in 2 cases. The values that appear in parentheses in the 
number of occurences column indicates the number of times 
that the model was not matched at all.
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