6,237 research outputs found

    Herculin, a Fourth Member of the MyoD Family of Myogenic Regulatory Genes

    Get PDF
    We have identified and cloned herculin, a fourth mouse muscle regulatory gene. Comparison of its DNA and deduced amino acid sequences with those of the three known myogenic genes (MyoD, myogenin, and Myf-5) reveals scattered short spans with similarity to one or more of these genes and a long span with strong similarity to all three. This long span includes a sequence motif that is also present in proteins of the myc, achaete-scute, and immunoglobulin enhancer-binding families. The herculin gene is physically linked to the Myf-5 gene on the chromosome; only 8.5 kilobases separate their translational start sites. A putative 27-kDa protein is encoded by three exons contained within a 1.7-kilobase fragment of the herculin gene. When expressed under the control of the simian virus 40 early promoter, transfected herculin renders murine NIH 3T3 and C3H/10T1/2 fibroblasts myogenic. In doing so, it also activates expression of myogenin, MyoD, and endogenous herculin in NIH 3T3 recipients. In adult mice, herculin is expressed in skeletal muscle but is absent from smooth muscle, cardiac muscle, and all nonmuscle tissues assayed. Direct comparison of the four known myogenic regulators in adult muscle showed that herculin is expressed at a significantly higher level than is any of the others. This quantitative dominance suggests an important role in the establishment or maintenance of adult skeletal muscle

    The fracture morphology of nickel-base superalloys tested in fatigue and creep-fatigue at 650 C

    Get PDF
    The fracture surfaces of compact tension specimens from seven nickel-base superalloys fatigue tested at 650 C were studied by scanning electron microscopy and optical metallography to determine the nature and morphology of the crack surface in the region of stable growth. Crack propagation testing was performed as part of an earlier study at 650 C in air using a 0.33 Hz fatigue cycle and a creep-fatigue cycle incorporating a 900 second dwell at maximum load. In fatigue, alloys with a grain size greater than 20 micrometers, HIP Astroloy, Waspaloy, and MERL 76, exhibited transgranular fracture. MERL 76 also displayed numerous fracture sites which were associated with boundaries of prior powder particles. The two high strength, fine grain alloys, IN 100 and NASA IIB-7, exhibited intergranular fracture. Rene 95 and HIP plus forged Astroloy displayed a mixed failure mode that was transgranular in the coarse grains and intergranular in the fine grains. Under creep-fatigue conditions, fracture was found to be predominantly intergranular in all seven alloys

    Computer program conducts facilities utilization and occupancy survey

    Get PDF
    Computer program identifies the uses of all facilities and provides information on the net area in each room as well as the number and classification of people occupying them. The system also provides a means to indicate unsatisfactory work areas and may be able to be updated each month

    Fatigue crack propagation of nickel-base superalloys at 650 deg C

    Get PDF
    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interactions are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size

    Creep-fatigue behavior of NiCoCrAlY coated PWA 1480 superalloy single crystals

    Get PDF
    Single crystal specimens of a Ni base superalloy, PWA 1480, with a low pressure plasma sprayed NiCoCrAlY coating were tested in various 0.1 Hz fatigue and creep fatigue cycles both at 1015 and 1050 C. Creep fatigue tests of the cp, pc, and cc types were conducted with various constant total strain ranges employing creep dwells at various constant stresses. Considerable cyclic softening occurred as was evidenced particularly by rapidly increasing creep rates in the creep fatigue tests. The cycle time in the creep fatigue tests typically decreased by more than 80 percent at 0.5 N sub f. Though cyclic life did correlate with delta epsilon sub in a better correlation existed with sub f for both the fatigue and creep fatigue tests, and poor correlations were observed with either sigma sub max or the average cycle time. A model containing both delta sigma and delta sigma (sub in), N sub f = alpha delta sigma (sub in) beta delta sigma gamma, with best fit values of sigma for each cycle type, but the same values of beta and gamam, was found to provide good correlations. Life lines were not greatly different among the cycle types, differing only by a factor of about three. The cp cycle life line was lowest for both test temperatures, however among the other three cycle types there was no consistent ranking. For all test types failure occurred predominately by multiple internal cracking originating at pores. The strong correlation of life with delta sigma may reflect a significant crack growth period in the life of the specimens

    Isothermal and bithermal thermomechanical fatigue behavior of a NiCoCrAlY-coated single crystal superalloy

    Get PDF
    Specimens of single crystal PWA 1480 with group of zone axes (100) orientation, bare, or with NiCoCrAlY coating PWA 276, were tested in low cycle fatigue (LCF) at 650, 870, and 1050 C, and in simplified bithermal thermomechanical fatigue (TMF) tests between these temperatures. These tests were examined as a bridge between isothermal LCF and general TMF. In the bithermal test, an inelastic strain is applied at one temperature, T sub max, and reversed at T sub min. The out-of-phase (OP) test type imposing tension at T sub min and compression at T sub max received most study, since it was more damaging than the in-phase type. Specifically investigated were the effects of: inelastic strain range, the coating, delta T, T sub max, T sub min, and the environment

    Professional Responsibility in Appellate Practice: A View from the Bench Lecture

    Get PDF

    Consol. Edison Co. v. Pub. Serv. Comm\u27n, 93 Misc. 2d 313, 402 N.Y.S.2d 551 (Sup. Ct. Albany County 1978)

    Get PDF
    Consol. Edison Co. v. Pub. Serv. Comm\u27n, 93 Misc. 2d 313, 402 N.Y.S.2d 551 (Sup. Ct. Albany County 1978) (PSC\u27s order banning utility from using bill inserts to promote utility\u27s position on controversial matters of public policy constituted an impermissibly vague restriction upon commercial speech in violation of the First and Fourteenth Amendments), rev\u27d, 63 A.D.2d 364, 407 N.Y.S.2d 735, aff\u27d, 47 N.Y.2d 94, 417 N.Y.S.2d 30 (1979), rev\u27d, 447 U.S. 530 (1980) (agreeing with Judge Miner\u27s holding that bill inserts ban was unconstitutional)
    • …
    corecore