700 research outputs found

    Herculin, a Fourth Member of the MyoD Family of Myogenic Regulatory Genes

    Get PDF
    We have identified and cloned herculin, a fourth mouse muscle regulatory gene. Comparison of its DNA and deduced amino acid sequences with those of the three known myogenic genes (MyoD, myogenin, and Myf-5) reveals scattered short spans with similarity to one or more of these genes and a long span with strong similarity to all three. This long span includes a sequence motif that is also present in proteins of the myc, achaete-scute, and immunoglobulin enhancer-binding families. The herculin gene is physically linked to the Myf-5 gene on the chromosome; only 8.5 kilobases separate their translational start sites. A putative 27-kDa protein is encoded by three exons contained within a 1.7-kilobase fragment of the herculin gene. When expressed under the control of the simian virus 40 early promoter, transfected herculin renders murine NIH 3T3 and C3H/10T1/2 fibroblasts myogenic. In doing so, it also activates expression of myogenin, MyoD, and endogenous herculin in NIH 3T3 recipients. In adult mice, herculin is expressed in skeletal muscle but is absent from smooth muscle, cardiac muscle, and all nonmuscle tissues assayed. Direct comparison of the four known myogenic regulators in adult muscle showed that herculin is expressed at a significantly higher level than is any of the others. This quantitative dominance suggests an important role in the establishment or maintenance of adult skeletal muscle

    Muscular dystrophy meets protein biochemistry, the mother of invention

    Get PDF
    Muscular dystrophies result from a defect in the linkage between the muscle fiber cytoskeleton and the basement membrane (BM). Congenital muscular dystrophy type MDC1A is caused by mutations in laminin α2 that either reduce its expression or impair its ability to polymerize within the muscle fiber BM. Defects in this BM lead to muscle fiber damage from the force of contraction. In this issue of the JCI, McKee and colleagues use a laminin polymerization–competent, designer chimeric BM protein in vivo to restore function of a polymerization-defective laminin, leading to normalized muscle structure and strength in a mouse model of MDC1A. Delivery of such a protein to patients could ameliorate many aspects of their disease

    Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice

    Get PDF
    In developing mouse embryos, MyoD family regulatory genes are expressed specifically in muscle precursors and mature myofibers. This pattern, taken together with the well-established ability of MyoD family members to convert a variety of cell types to skeletal muscle, suggests a significant role for these genes in regulating skeletal myogenesis. The possibility that expression of these genes may be causally associated with segregation of the myogenic lineage from other mesodermal derivatives, or with the subsequent maintenance of muscle phenotypes at later times, raises the issue of how MyoD family genes are themselves regulated during development. In this work, we have initiated studies to identify DNA sequences that govern Myf-5 and MRF4 (herculin, myf-6) transcription. Myf-5 is the first of the MyoD family to be expressed in the developing mouse embryo, while MRF4 is the most abundantly expressed myogenic factor in postnatal animals. In spite of their strikingly divergent patterns of expression, Myf-5 and MRF4 are tightly linked in the mouse genome; their translational start codons are only 8.5 kilobases apart. Here, the 5' flanking regions of the mouse Myf-5 and MRF4 genes were separately linked to a bacterial β-galactosidase (lacZ) gene, and these constructs were each used to produce several lines of transgenic mice. Transgene expression was monitored by X-gal staining of whole embryos and by in situ hybridization of embryo sections. For the Myf-5/lacZ lines, the most intense transgene expression was in the visceral arches and their craniofacial muscle derivatives, beginning at day 8.75 post coitum (p.c.). This correlates with endogenous Myf-5 expression in visceral arches. However, while Myf-5 is also expressed in somites starting at day 8 p.c., transgene expression in the trunk is not observed until day 12 p.c. Thus, the Myf-5/lacZ construct responds to early Myf-5 activators in the visceral arches but not in the somites, suggesting that myogenic determination in the nonsomitic head mesoderm may be under separate control from that of the somitic trunk mesoderm. MRF4/lacZ lines displayed an entirely different pattern from Myf-5. Transgene expression appeared in muscles starting at day 16.5 p.c. and became increasingly prominent at later times. However, an early wave of myotomal expression that is characteristic of the endogenous MRF4 was not recapitulated by the transgene

    Mystery solved: discovery of a novel integrin ligand in the developing kidney

    Get PDF
    Mutant mice lacking the integrin α8 subunit exhibit variable defects in kidney development with most mutants missing both kidneys. Several lines of evidence indicate that the known extracellular matrix ligands for integrin α8β1 are either dispensable for or not involved in α8β1 signaling during kidney development. This suggests the presence of an unknown ligand. A novel α8β1 ligand, nephronectin, has now been identified. Nephronectin is a new extracellular matrix protein associated with the Wolffian duct and the ureteric bud, epithelial structures with well-defined roles in kidney development

    Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation

    Get PDF
    CRISPR/Cas9-mediated transcriptional activation (CRISPRa) is a powerful tool for investigating complex biological phenomena. Although CRISPRa approaches based on the VP64 transcriptional activator have been widely studied in both cultured cells and in animal models and exhibit great versatility for various cell types and developmental stages in vivo, different dCas9-VP64 versions have not been rigorously compared. Here, we compared different dCas9-VP64 constructs in identical contexts, including the cell lines used and the transfection conditions, for their ability to activate endogenous and exogenous genes. Moreover, we investigated the optimal approach for VP64 addition to VP64- and p300-based constructs. We found that MS2-MCP-scaffolded VP64 enhanced basal dCas9-VP64 and dCas9-p300 activity better than did direct VP64 fusion to the N-terminus of dCas9. dCas9-VP64+MCP-VP64 and dCas9-p300+MCP-VP64 were superior to VP64-dCas9-VP64 for all target genes tested. Furthermore, multiplexing gRNA expression with dCas9-VP64+MCP-VP64 or dCas9-p300+MCP-VP64 significantly enhanced endogenous gene activation to a level comparable to CRISPRa-SAM with a single gRNA. Our findings demonstrate improvement of the dCas9-VP64 CRISPRa system and contribute to development of a versatile, efficient CRISPRa platform

    Skeletal muscle phenotypes initiated by ectopic MyoD in transgenic mouse heart

    Get PDF
    Forced expression of the myogenic regulatory gene MyoD in many types of cultured cells initiates their conversion into skeletal muscle. It is not known, however, if MyoD expression serves to activate all or part of the skeletal muscle program in vivo during animal development, nor is it known how limiting the influences of cellular environment may be on the regulatory effects of MyoD. To begin to address these issues, we have produced transgenic mice which express MyoD in developing heart, where neither MyoD nor its three close relatives—myogenin, Myf-5, and MRF4/herculin/Myf-6—are normally expressed. The resulting gross phenotype in offspring from multiple, independent transgenic founders includes abnormal heart morphology and ultimately leads to death. At the molecular level, affected hearts exhibit activation of skeletal muscle-specific regulatory as well as structural genes. We conclude that MyoD is able to initiate the program that leads to skeletal muscle differentiation during mouse development, even in the presence of the ongoing cardiac differentiation program. Thus, targeted misexpression of this tissue-specific regulator during mammalian embryogenesis can activate, either directly or indirectly, a diverse set of genes normally restricted to a different cell lineage and a different cellular environment

    Interactive Influence of Turbidity and Light on Larval Bluegill (Lepomis macrochirus) Foraging

    Get PDF
    Abstract in English and French.In a series of in situ enclosure experiments with larval bluegill (lepomis macrochirus), we demonstrate that turbidity from suspended sediments reduces bluegill consumption of crustacean zooplankton, primarily cyclopoid copepods and cogepod nauplii. However, this reduction occurred only when light intensity in parts of enclosures fell below a threshold, estimated at <450 lx. Following recent studies demonstrating copepod die1 vertical migration in response to predators, it appears that copepods in our experiments used low-light strata as a refuge. Without this apparent refuge present, larval bluegill consumption increased with increasing turbidity, but prey were smaller on average. Thus, prey biomass consumed by larval bluegill did not differ with turbidity in high-light conditions. We postulate that the shift to smaller prey across taxa at higher turbidity, when light intensity exceeded 450 lx, derives from increased prey-background contrast. In low-light conditions, larval bluegill consumed larger, but fewer, zooplankton with increasing turbidity, resulting in lower prey biomass consumed. Thus, we demonstrate the field conditions causing negative turbidity effects on larval fish foraging success, and thus growth and recruitment.This research was supported in part by National Science Foundation grants BSR-8715730 and BSR-9107173 to R. A. Stein and Sigma Xi Grants-in-Aid-of-Research to J. G. Miner

    Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome

    Get PDF
    MRF4 (herculin/Myf-6) is one of the four member MyoD family of transcription factors identified by their ability to enforce skeletal muscle differentiation upon a wide variety of nonmuscle cell types. In this study the mouse germline MRF4 gene was disrupted by targeted recombination. Animals homozygous for the MRF4bh1 allele, a deletion of the functionally essential bHLH domain, displayed defective axial myogenesis and rib pattern formation, and they died at birth. Differences in somitogenesis between homozygous MRF4bh1 embryos and their wild-type littermates provided evidence for three distinct myogenic regulatory programs (My1-My3) in the somite, which correlate temporally and spatially with three waves of cellular recruitment to the expanding myotome. The first program (My1), marked initially by Myf-5 expression and followed by myogenin, began on schedule in the MRF4bh1/bh1 embryos at day 8 post coitum (E8). A second program (My2) was highly deficient in homozygous mutant MRF4 embryos, and normal expansion of the myotome failed. Moreover, expression of downstream muscle-specific genes, including FGF-6, which is a candidate regulator of inductive interactions, did not occur normally. The onset of MyoD expression around E10.5 in wild-type embryos marks a third myotomal program (My3), the execution of which was somewhat delayed in MRF4 mutant embryos but ultimately led to extensive myogenesis in the trunk. By E15 it appeared to have largely compensated for the defective My2 program in MRF4 mutants. Homozygous MRF4bh1 animals also showed improper rib pattern formation perhaps due to the absence of signals from cells expressing the My2 program. Finally, a later and relatively mild phenotype was detected in intercostal muscles of newborn animals

    Urate Handling in the Human Body

    Get PDF
    corecore