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Abstract Elevated serum urate concentration is the primary
cause of gout. Understanding the processes that affect serum
urate concentration is important for understanding the etiology
of gout and thereby understanding treatment. Urate handing in
the human body is a complex system including three major
processes: production, renal elimination, and intestinal elimi-
nation. A change in any one of these can affect both the
steady-state serum urate concentration as well as other urate
processes. The remarkable complexity underlying urate regu-
lation and its maintenance at high levels in humans suggests
that this molecule could potentially play an interesting role
other than as a mere waste product to be eliminated as rapidly
as possible.
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Introduction

Urate is produced during the metabolism of endogenous (typ-
ically DNA and RNA) and exogenous (food-derived) purines.
Once produced, urate cannot be further metabolized by human
cells and so must be eliminated by either renal or extra-renal
elimination routes (primarily via the intestine and the intesti-
nal flora). The balance of production and elimination deter-

mines the concentration of urate in the circulation. Urate, with
a pKa of 5.3 [1], is also found in its deprotonated form uric
acid; however, uric acid represents only ~1% of the total urate
in blood because of the pH. In urine, more of the urate is
unprotonated uric acid due to the lower pH found in urine
but at any urine pH above 5.3, more than half the molecule
will be in the form of urate.

Elevated serum urate (sUA) is the primary cause of gout, an
inflammatory arthritis induced by monosodium urate crystals.
Hyperuricemia is defined as sUA concentrations greater than
6.8 mg/dl, which is the in vitro solubility limit of monosodium
urate. Gout occurs in patients with sUA above 6.8 mg/dl and
gout prevalence increases as sUA rises above the 6.8 mg/dL
threshold [2]. International guidelines recommend lowering
sUA levels to a target range of <6 mg/dL (<360 μmol/L) in
all gout case scenarios and below <5 mg/dl (<300 μmol/L) in
those with greater disease severity and urate burden, such as
those with tophi [3, 4]. Therefore, clarity on the interplay
between factors that affect serum urate handling is a key com-
ponent to understanding and treating gout.

Production

As noted above, endogenous production of urate derives from
the normal cellular metabolism (turnover) of purines such as
DNA, RNA, and ATP. The other source of substrates for urate
production is dietary purines that are metabolized to urate in
the intestine [5–8]. Therefore, the amount of purines in diet
can affect urate production, though a significant reduction in
dietary purines is required to have clinically relevant decreases
in sUA [9–11]. Other factors that appear to impact production
are consumption of fructose and beer [12]. As a result of
environmental and physiological changes, sUA levels can
vary significantly from day to day.
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Elimination

Elimination of urate occurs via two routes: renal elimination
and extra-renal elimination. Urate elimination is a dynamic
process mediated bymultiple specific import and export trans-
porters in the renal proximal tubule, salivary glands and the
intestinal mucosa [13]. The amount of urate excreted via these
elimination routes can be quantified as clearance in milliliters
per minute of serum (or blood) in the circulation that is
cleared. Thus, the total clearance of urate is the sum of the
renal clearance and the extra-renal clearance. The total rate of
urate removed per minute is the product of the total clearance
and the sUA concentration. So, at steady state, for a given rate
of production, sUA will settle at a point at which total elimi-
nation is equal to production. These relationships form the
basis for understanding the dynamics of urate concentration
in the serum.

Renal Elimination

The kidney is typically responsible for approximately 60–65 %
of daily urate elimination [14]. Urate in blood is freely filtered in
the kidney by the glomerulus. The filtered urate is subjected to
significant reabsorption in the proximal tubule. In addition, se-
cretion of urate also occurs. Both these processes are carried out
by a series of membrane transporters described later. Of the fil-
tered urate, only 3–10 % is eventually excreted in the urine with
the majority reabsorbed in the proximal tubule. Fractional excre-
tion of urate (FEUA) is a description of the net urate reabsorption
efficiency of the kidney. FEUA is defined as the percent of fil-
tered urate that is ultimately excreted.

FEUA ¼ excreted urate=filtered urate

FEUA can be estimated using serum and urine concentra-
tions of urate and creatinine using the following formula
which assumes that creatinine clearance is the same as GFR.

FEUA ¼ uUA=uCr * sCr=sUA

where uUA is the urinary urate concentration, uCR is the uri-
nary creatinine concentration, sCR is the serum creatinine
concentration, and sUA is the serum urate concentration.

While hyperuricemia can be caused by overproduction of
urate and decreased intestinal excretion of urate, decreased
renal excretion or low FEUA represents a major contributor
to hyperuricemia. Healthy subjects have an average FEUA in
the range of 6–8 %, whereas gout patients generally have
average FEUA of 3–5 %. As seen in Fig. 1, keeping produc-
tion, GFR, and extra-renal clearance constant, sUA is a func-
tion of FEUA.

After filtration by the glomerulus, the urate passes into the
proximal tubule where a large portion of the filtered urate is
reabsorbed; a smaller portion of urate is secreted as well.

However, the degree and location of tubular secretion are a
subject of controversy. For many years, the accepted model of
renal handling of urate, known as the four-component model,
was diligently memorized by students in the field. This model
was composed of the following four steps: glomerular
filtration, almost complete reabsorption, significant secre-
tion, and then subsequent reabsorption of the secreted
urate [15]. This model was based on an incorrect as-
sumption regarding the effect of pyrazinamide and low-
dose aspirin on urate transporters in the kidney. It was
assumed that these drugs caused an inhibition of secre-
tory transporters and much of the research done for many
years after that was designed and interpreted based on
those assumptions. However, in 1996, using human kidney
brush border vesicles, it was observed that pyrazinoic acid
(PZA), a metabolite of pyrazinamide, stimulates uptake of
urate [16]. Later, after the cloning and expression of the kid-
ney urate transporter, URAT1, it was found that PZA and
salicylic acid both trans-stimulate uptake of urate by
URAT1, which neatly explains their activity as stimulators
of reabsorption rather than inhibitors of secretion [17]. There
have been no reports of inhibition of any secretory trans-
porters by these agents. With this knowledge, many publica-
tions that were designed to understand the contributions of
reabsorption and secretion can be reexamined in light of this
new perspective [15, 18].

Our current view is that, after glomerular filtration,
90–97 % of urate is reabsorbed in the proximal tubule.
Tubular secretion of urate does occur; however, it is not
yet clear if the secretion happens concomitantly with
reabsorption and/or if there is post-reabsorptive secre-
tion within the tubule.

Given the ~180 l of water cycled through the kidney each
day together with the rapid cycle of urate filtration, reabsorp-
tion and secretion, any given molecule of urate may pass
through the kidneymultiple times a day before being excreted.
This is accomplished via an array of renal transporters driving
both reabsorption and secretion of urate.
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Fig. 1 Holding intestinal clearance constant at 6 ml/min, production
constant at 1100 mg/day, and GFR constant at 100 mL/min, sUA is
calculated as production divided by total clearance (extra-renal plus
renal clearance)
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Reabsorption of Urate in the Kidney

No method is available to measure renal urate reabsorption
directly. However, because urine urate excretion is less than
10 % of the filtered urate load, there is no question that
reabsorption represents a significant component of urate
handling by the kidney. Various transporters that play a
role in reabsorption have been identified and are shown
in Fig. 2.

Reabsorption Transporters

URAT1

URAT1 (SLC22A12) has been identified as one of the two
most important transporters for urate reabsorption from the
apical (luminal) side of the proximal tubule [17]. URAT1 is
a typical 12-transmembrane domain protein capable of
transporting urate in vitro. Its importance in renal urate reab-
sorption is confirmed by the observation that individuals who
are deficient in functional URAT1 have FEUA of 40–100 %
and extremely low serum urate levels [19]. GWAS studies
have demonstrated an important role for URAT1 in both hy-
peruricemia and gout [20]. Additionally, URAT1 is the target
for a number of urate lowering therapies (ULTs) that decrease
reabsorption of urate. Indeed, all known drugs capable of in-
creasing FEUA (benzbromarone, probenecid, losartan, and
lesinurad) inhibit URAT1. Conversely, there are compounds
that raise urate levels by increasing the activity of URAT1 and

thereby decreasing FEUA. These include both endogenous
compounds (lactate and nicotinate) [17], as well as drugs
(pyrazinamide and aspirin) [21–23].

GLUT9

Glucose transporter 9 (GLUT9, SLC2A9), also referred to as
URATv1, is present on the basolateral side of proximal tubule
cells of the kidney and is the other transporter fundamental to
the reabsorption of urate. GLUT9 is a facilitative transporter
of urate shown to be strongly linked to both hyperuricemia
and gout in GWAS studies [24–28, 29•]. Several reports of
subjects with homozygous inactivating GLUT9 mutations
demonstrate that these subjects have no net reabsorption of
urate presenting with FEUA’s of 100 % or greater. This indi-
cates that it is likely that GLUT9 is the only transporter re-
sponsible for the efflux of reabsorbed urate from the interior of
the proximal tubule cells back to the blood. GLUT9 actually is
present in two different splice variants. The variant SLC2A9-
L or long isoform is present on the basolateral side and is
responsible for the urate export stage of reabsorption.
SLC2A9-S or (short isoform) is expressed in the kidney; how-
ever, its function is currently under investigation [30, 31].

OAT4

Organic anion transporter 4 (OAT4; SLC22A11) is capable of
transporting organic anions, including hormones and various
drugs in vitro and is expressed on the apical membrane of the

Fig. 2 Urate transporters in the
kidney—a representative
proximal tubule cell is shown
with the relevant secretory and
resorptive transporters localized
to either the basolateral or apical
membranes. The arrows denote
the direction of transport for
substrates. The questionmarks for
urate and selected transporters
denote that questions surround the
role of these proteins in urate
handling in vivo
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proximal tubule. OAT4 also transports urate and shares se-
quence similarity to URAT1 [32]. OAT4 is associated with
hyperuricemia and gout in many genetic studies [25–28].
Sakiyama et al. reported that patients with the OAT4 variant
associated with gout and hyperuricemia exhibited inefficient
renal excretion, highlighting the role of OAT4 in renal urate
handling [33]. OAT4-mediated urate transport has been
reported, although the activity is very low compared to that
of URAT1 [34] (unpublished).

OAT10

OAT10 (SLC22A13) is also present on the apical side of the
kidney proximal tubule and has been shown to transport urate
with low affinity in vitro. Similar to URAT1, the transport of
urate by OAT10 is stimulated by exchange of lactate,
pyrazinoate, and nicotinate [35]. However, GWAS studies
have not suggested a connection between OAT10 and either
gout or hyperuricemia [36•].

Tubular Secretion

Evidence of tubular secretion of urate was first reported in
1950 in a case study of a subject with hypouricemia that had
a defect in reabsorption of urate [37]. Urate clearance was
greater than that of inulin, indicating that more urate was being
excreted than was being filtered. This can only occur when
tubular secretion is present.

Further evidence of tubular secretion of urate was reported
by Gutman, Yu, and Berger, who infused patients with intra-
venous urate to produce very high sUA concentrations [38].
These authors described FEUA values greater than 100 % in
these subjects, also consistent with the existence of tubular
secretion. More recently, subjects with deactivating mutations
of GLUT9 were shown to have, in many cases, FEUAvalues
greater than 100 %, once again indicating urate tubular secre-
tion [39]. Finally, the wealth of genetic data (described below)
implicating renal secretory transporters in hyperuricemia and
the risk of gout cements tubular secretion’s role in urate
regulation.

The extent to which urate secretion is concomitant with,
versus occurs after reabsorption, remains unclear. Publications
describing the effect of pyrazinamide on FEUA demonstrated
that when subjects are given a high dose of pyrazinamide, the
average FEUA is approximately 0.5 %. Because the only
known effect of pyrazinamide on urate handling is to increase
reabsorption by URAT1, this indicates that 0.5 % is the upper
limit of post-reabsorptive secretion [15]. However, data from
various studies including our own indicate that when sUA is
decreased, the FEUA decreases as well but importantly levels
off at an FEUA of approximately 2 % [23, 40, 41] (Liu et al.,
manuscript in preparation), which indicates that the total con-
tribution of secretion is somewhat higher than the contribution

of post-reabsorptive secretion. This leads to the conclusion
that a significant component of secretion occurs concomitant-
ly with reabsorption.

Tubular Secretion Transporters

Several potential renal secretory transporter candidates have
been identified. These can be divided into basolateral trans-
porters, which would transport urate from the interstitial fluid
into proximal tubule cells, and apical transporters, which
would transport urate from proximal tubule cells into the lu-
men of the proximal tubule.

ABCG2/BCRP (ABCG2), NPT1 (SLC17A1), NPT4
(SLC17A3), and MRP4 (ABCC4) have all been localized on
the apical side of the proximal tubule and have all been shown
to transport urate in vitro [42–44]. GWAS studies show that
ABCG2, NPT1, and NPT4 are associated with hyperuricemia
and gout [20, 27, 28, 45]. MRP4 is not associated in these
studies, and since no mutations in MRP4 have been found
that affect the risk of gout or hyperuricemia, its importance
remains unclear. Individual contributions of NPT1 and NPT4
to tubular secretion have been postulated, but their relative
roles in the kidney remain incompletely defined. As for
ABCG2, the story may be more complicated. ABCG2 was
first hypothesized to be functional in renal proximal
tubule cells [46]. One study found much higher expres-
sion in intestine relative to kidney [47]. Consistent with
intestinal expression, the clinical urate excretion pheno-
type of ABCG2 variants is better explained by an effect
on intestinal excretion rather than an effect of urate
handling in the kidney, a point discussed more fully
later. Since ABCG2’s function in the kidney is unclear,
NPT4 and NPT1 remain the apical secretory transporters
expressed in the renal apical membrane with the most
support for a role in the renal secretion of urate.

Which transporters are involved in tubular secretion
on the basolateral side of the proximal tubule is a com-
plex question. If, as is believed, much of the secretion
occurs in the same cells of the proximal tubule as reab-
sorption (concomitant secretion), then much of what is
secreted could simply be the urate that was previously
reabsorbed. But, because GLUT9-deficient subjects have
net secretion of urate, this is consistent with import of
urate from the interstitium through the basolateral mem-
brane of the tubule. OAT1, OAT2, and OAT3 have been
considered the primary candidates for this because they
can transport urate in vitro [48], though there is no
supporting genetic data for a role for these transporters.
Finally, although GLUT9 is clearly a component of the
urate reabsorption system functioning as an exporter out
of the cell into the interstitium as described earlier, it
may also function as an importer with a role in secretion.
In vitro, GLUT9 is capable of importing as well as
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exporting urate [49], consistent with its facilitative trans-
port mechanism. It could have a role in the movement of
urate from the interstium across the basolateral mem-
brane into the proximal tubule cell as part of the tubular
secretion machinery. However, because patients with
GLUT9 mutations have evidence for continued secretion,
then other transporters are likely involved.

Fractional Excretion of Urate as a Function of sUA

As mentioned earlier, sUA is determined in part by FEUA.
Conversely, FEUA can change as a result of changes in sUA.
Several studies have assessed FEUA for the same subjects before
and after sUAwas modified by means not directly affecting the
kidney [9, 18, 23, 40, 50–52]. These include administration of
xanthine oxidase inhibitors, purines, or infusion of urate itself.
The results from awide variety of studies indicate that when sUA
is increased in a renal-independent fashion, FEUA increases and
similarly when sUA decreases, FEUA decreases, as shown in
Fig. 3. This dynamic response to sUA levels is likely an inherent
property of the transporters found in the kidney. Interestingly,
when FEUA is very low at baseline (as is typically true of gout
patients), the FEUA does not decrease as much when sUA de-
creases and the FEUA does not continue to decrease to zero as
sUA drops. Instead, FEUA appears to level off at a specific
nonzero point (approximately 2 % FEUA). Our own data has
corroborated this understanding (manuscript in preparation).
While we have not pushed sUA levels below 2 mg/dl in our
clinical studies, we have detected the point at which FEUA levels
off. The fact that FEUA does not go to zero under these condi-
tions is consistent with the presence of tubular secretion of urate.
In addition, we have developed a mathematical model of the
proximal tubule to calculate FEUA based on principles of trans-
porter kinetics for reabsorption and secretion that fits these
observations.

Agents Affecting Renal Handling

Pyrazinamide, a drug used to treat tuberculosis, significantly
increases serum urate levels [22]. Pyrazinoic acid (PZA), a
metabolite of pyrazinamide, stimulates URAT1 activity,
which decreases renal urate clearance and increases sUA
levels [16, 17]. Low-dose aspirin also causes a decrease in
renal clearance of urate. Salicylic acid, the active metabolite
of aspirin, stimulates URAT activity [53].

Uricosuric Drugs

FDA-approved drugs for the treatment of hyperuricemia and
gout are known to inhibit URAT1 and include probenecid and
lesinurad (Zurampic). Probenecid is an older medication that is
uncommonly used in gout due to difficult dosing schedule and
prevalent drug–drug interactions. Lesinurad is a recently FDA-
approved selective urate resorption inhibitor (SURI) for the treat-
ment of hyperuricemia associated with gout, capable of lowering
urate in combination with a xanthine oxidase inhibitor. Lesinurad
was also recently approved in Europe for the treatment of gout.
Another URAT1 inhibitor, benzbromarone, is approved for use
in Japan but is only available on a named patient basis in Europe
and is not approved in theUSAdue to idiosyncratic liver toxicity.
Losartan, an antihypertensive agent that has the additional prop-
erty of lowering urate level, likely has this effect through inhibi-
tion of URAT1 [17].

Diuretics

Long-term treatment with either thiazide or loop diuretics
causes a lowering of the renal clearance of urate resulting in
an increase in serum urate and the risk of gout [54]. These
agents may affect urate levels by multiple mechanisms, and a
number of hypotheses have been developed with reasonable
supporting data. Hypovolemia resulting from diuretic use may
be an important effector of diuretic-induced hyperuricemia.
This is demonstrated by the fact that salt restriction, which
also causes hypovolemia, produces hyperuricemia that is re-
versed by salt loading [55, 56].

Loop and thiazide diuretics produce an increase in angiotensin
II. Angiotensin II increases have been shown to decrease the
FEUA resulting in increased sUA [57]. Mechanistically speak-
ing, decreases in FEUA due to angiotensin II may be linked to
enhanced URAT1 activity. Increases in angiotensin II cause in-
creased expression of NHE3, a sodium-hydrogen exchanger,
among others [58]. NHE3 absorbs sodium and exports hydrogen
ions into the lumen of the nephron resulting in a decrease in pH.
In vitro URAT1 is more active at lower pH when expressed in
human cells (our unpublished data), so increased activity of
NHE3 could result in increased URAT1 activity. Further evi-
dence that increased URAT1 activity is the mechanism of
diuretic-induced hyperuricemia is the report that diuretics also
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Fig. 3 Representation of our view on the effects of changing sUA on
FEUA. This is based on our own clinical analysis as well as data from
several publications that have reported that FEUA increases as sUA is
increased by purine loading or urate infusion. Also, FEUA has been seen
to decrease when sUA is decreased by xanthine oxidase inhibitors or low
purine diets but does not go below FEUAof 2% and apparently levels off
as sUA approaches zero [9, 18, 23, 40, 50–52]
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reduce the clearance of the allopurinolmetabolite oxypurinol [59,
60]. Oxypurinol is reabsorbed in the kidney by URAT1 just as
urate is [61]. Therefore, it is possible that the decrease in renal
clearance of urate due to diuretic use is via an increase in URAT1
activity. However, a genetic association between URAT1 and
diuretic induced hyperuricemia has not been found in either pub-
lished study of this phenomenon.

Other publications suggest the potential involvement of
OAT4 in diuretic-induced hyperuricemia. Evidence exists for
direct stimulation of OAT4 by hydrochlorothiazide, a thiazide
diuretic, and torsemide, a loop diuretic [34, 62], suggesting
that this mechanism might be a potential contributor to
diuretic-induced hyperuricemia. However, no additional re-
ports of this in vitro phenomenon have surfaced to suggest
that all thiazide or loop diuretics would have this same effect.
There is conflicting genetic data on OAT4 and diuretic-
induced hyperuricemia. One study reported an association
[63], while another study did not [64]. Testing selective
OAT4 inhibitors in clinical trials or detecting nonsynonymous
variants in OAT4 with phenotypic effects are two potential
approaches to clarify the role of OAT4 in diuretic-induced
hyperuricemia.

SGLT2 Inhibitors

Sodium-dependent glucose transporters are responsible
for the active transport of glucose across the proximal
tubular membrane. Inhibitors of these transporters pre-
vent renal glucose reabsorption and decrease serum glu-
cose levels significantly. These agents as a class also
lower uric acid levels by increasing urinary urate clearance.
This effect may be due to the action of glucose on GLUT9-
mediated urate transport, though the specific mechanism is
unclear [30, 65].

Intestinal Elimination

Based on published experiments calculating production
[14], the average person excretes approximately 65 % of
their daily urate production via the kidney and the re-
mainder via extra-renal elimination. However, some
gout patients have been found to excrete only 40 %
via the kidney. Therefore, in some subjects, such as those with
renal failure, the relative role of extra-renal eliminationmay be
greater.

As in the kidney, urate transporters are likely involved in
urate handling in the intestine. Urate enters the intestine either
by secretion from the bloodstream, or as a component of bile,
saliva, or peptic juices. Once in the intestine, urate can be
reabsorbed as evidenced by the fact that Sevelamer, a nonab-
sorbable, phosphate-binding polymer that also binds urate and
can lower serum urate levels. That which is not reabsorbed is
degraded by the uricase activity found in the intestinal

microbiome resulting in CO2 or allantoin [66]. Almost no
urate is found in feces under normal conditions because of
these mechanisms [66].

ABCG2

ABCG2, also called BCRP, was first identified as a transporter of
xenobiotics and was associated with multi-drug resistance to
chemotherapeutic drugs. In 2008, ABCG2 was identified in a
GWAS study [45] as being associated with serum urate levels,
and in 2009, it was found to transport urate in vitro [46]. Genetic
validation came when an ABCG2 variant (Q141K) associated
with elevated serum urate and was found to have less urate
transport activity, consistent with a role in excretion of urate [67].

ABCG2 is present in both kidney and intestine, but expres-
sion in kidney is weak, whereas expression in the small intestine
is very strong [68]. Multiple lines of evidence exist supporting its
role in secreting urate into the intestine. Ichida et al. [67] reported
that the ABCG2 risk allele was associated with hyperuricemia in
which renal urate excretion is increased. This is consistent with a
direct effect on intestinal elimination and an indirect effect on the
kidney. Similarly, Dalbeth et al. reported that subjects with the
Q141K risk variant have not only higher SUA but also slightly
higher FEUA [69•]. More recently, Matsuo et.al [70] also report-
ed that the ABCG2 variant responsible for hyperuricemia
increased FEUA. In contrast, Kottgen et.al. [36•] reported that
FEUA is lower in those with the ABCG2 variants associated
with hyperuricemia. The Kottgen report is the outlier in this case,
and it is difficult to reconcile this result with the others. One
explanation for why an increase in FEUA might be observed in
patients with ABCG2 dysfunction is that lack of intestinal secre-
tion raises sUAwhich in turn can indirectly increase FEUA, as
mentioned earlier.

One other intestinal transporter that may play a role is
NPT5 (SLC17A4). This transporter is an anion exporter with
homology to sodium-phosphate cotransporters and is specifi-
cally expressed on the intestinal brush border membrane. It
can transport urate in vitro [71]. Furthermore, genome-wide
association studies have identified the cluster that includes
NPT5 as being associated with circulating urate concentration
[72], an important potential hint as to its role in gout.

Conclusions

Urate handling is a complex, dynamic balance between three
major processes: production, renal elimination, and intestinal
elimination. A change in any one of these can affect both the
steady-state serum urate concentration as well as other urate pro-
cesses. The remarkable complexity underlying urate regulation
and its maintenance at high levels in humans suggests that this
molecule could potentially play an interesting role other than as a
mere waste product to be eliminated as rapidly as possible.
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