78 research outputs found

    The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma

    Get PDF
    The neurodegenerative disease glaucoma is characterised by the progressive death of retinal ganglion cells (RGCs) and structural damage to the optic nerve (ON). New insights have been gained into the pathogenesis of glaucoma through the use of rodent models; however, a coherent picture of the early pathology remains elusive. Here, we use a validated, experimentally induced rat glaucoma model to address fundamental issues relating to the spatio-temporal pattern of RGC injury. The earliest indication of RGC damage was accumulation of proteins, transported by orthograde fast axonal transport within axons in the optic nerve head (ONH), which occurred as soon as 8 h after induction of glaucoma and was maximal by 24 h. Axonal cytoskeletal abnormalities were first observed in the ONH at 24 h. In contrast to the ONH, no axonal cytoskeletal damage was detected in the entire myelinated ON and tract until 3 days, with progressively greater damage at later time points. Likewise, down-regulation of RGC-specific mRNAs, which are sensitive indicators of RGC viability, occurred subsequent to axonal changes at the ONH and later than in retinas subjected to NMDA-induced somatic excitotoxicity. After 1 week, surviving, but injured, RGCs had initiated a regenerative-like response, as delineated by Gap43 immunolabelling, in a response similar to that seen after ON crush. The data presented here provide robust support for the hypothesis that the ONH is the pivotal site of RGC injury following moderate elevation of IOP, with the resulting anterograde degeneration of axons and retrograde injury and death of somas

    Controversies in the Use of MIGS

    Get PDF
    Abstract Minimally invasive glaucoma surgery (MIGS) has fulfilled an unmet need in the management of glaucoma. This chapter highlights some controversial issues regarding the use of MIGS in clinical practice, including (1) whether there is sufficient evidence to advocate combining MIGS with cataract surgery over cataract surgery alone, (2) the merits and drawbacks of different approaches to trabecular bypass and canal-based MIGS procedures, (3) the effect of MIGS on endothelial cell loss, (4) suprachoroidal MIGS devices and whether there is still a role for these procedures, and (5) a comparison between subconjunctival MIGS and trabeculectomy. Several questions are still left unanswered and hopefully, further research and more clinical experience with these new technologies will help improve surgical outcomes for patients

    Tripolymers from Butyl Rubber Polymerization

    No full text

    In vitro and in vivo flow characteristics of glaucoma drainage implants

    No full text
    PURPOSE: To determine pressure-flow characteristics at physiologic flow rates in vitro and in vivo in rabbits for Ahmed, Baerveldt, Krupin disk, and OptiMed glaucoma implants. The Molteno dual-chamber implant also was evaluated in vivo only. METHODS: Five samples of each glaucoma implant were studied. Baerveldt implants were ligated partially for in vitro testing. Opening and closing pressures in air or after immersion in balanced salt solution or plasma were evaluated for the valved devices (Ahmed and Krupin). Pressures were measured in vitro and in vivo in normal rabbits at flow rates preset at between 2 and 25 microliters/minute after the tubes were connected to a closed manometric system. In vivo measurements were made 24 hours after implantation. Resistance to flow was calculated using Poiseuille's equation after at least three separate flow rate readings. RESULTS: In air, the Ahmed and Krupin valves had opening pressures of 9.2 +/- 3.4 and 7.2 +/- 0.6 mmHg and closing pressures of 5.2 +/- 0.9 and 3.9 +/- 1 mmHg, respectively. Neither opening nor closing pressures could be determined when Ahmed and Krupin valves were immersed. In vitro, the Ahmed and OptiMed devices had higher pressures than did other devices at a 2-microliters/minute flow rate of balanced salt solution. During perfusion with plasma, only the OptiMed device maintained higher pressures than with balanced salt. With all devices, pressures fell rapidly to zero after flow was stopped. The OptiMed device demonstrated the highest resistance values. In vivo, the Ahmed device provided pressures of 7.5 +/- 0.8 mmHg and the OptiMed device gave pressures of 19.6 +/- 5.6 mmHg at a 2-microliters/minute flow rate. After 15 minutes of flow shutdown, the OptiMed implant maintained pressures of 7.1 +/- 1.1 mmHg. The Baerveldt (nonligatured), Krupin, and Molteno dual-chamber implants had similar resistances and pressures in vivo. Pressures with all devices in vivo fell rapidly to zero after conjunctival wound disruption. CONCLUSION: Neither the Ahmed nor Krupin devices had demonstrable opening or closing pressures when tested in vitro immersed in balanced salt solution or plasma. With all devices, pressures were higher in vivo than in vitro due to tissue-induced resistance around the explant. Both Ahmed and Krupin valves functioned as flow-restricting devices at the flow rates studied, but did not close after initial perfusion with fluid

    Multimodal Imaging in Ocular Siderosis

    No full text
    PurposeThis report aims to characterize ocular changes in a case of ocular siderosis with iron toxicity using multimodal imaging and electroretinography.MethodsA 34-year-old woman presented with ocular siderosis of the left eye following penetrating injury with an iron-containing foreign body. The patient's uncorrected visual acuities were 20/60 and 20/150 in the right and left eye, respectively, with abnormal pupillary function and presence of a cataract in the left eye. She underwent successful intraocular foreign body removal and cataract surgery with no postoperative complications. Cone contrast threshold (CCT), full-field electroretinogram, spectral-domain optical coherence tomography (OCT), and OCT angiography (OCTA) were used to characterize ocular alterations preoperatively and postoperatively.ResultsCCT color vision testing showed abnormal color vision, and OCTA revealed increased vascular flow density associated with the foreign body.ConclusionsCCT color vision testing, OCTA, OCT, and full-field electroretinogram can characterize retinal changes in cases of ocular siderosis
    corecore