352 research outputs found

    Patterns of demography for rocky-shore, intertidal invertebrates approaching their geographical range limits: tests of the abundant-centre hypothesis in south-eastern Australia

    Get PDF
    The abundant-centre hypothesis predicts that species\u27 abundances peak at the centre of their geographical ranges and decline gradually towards their range limits. We tested predictions of this hypothesis for three rocky-shore, intertidal invertebrates with planktonic larvae (the whelk, Morula marginalba, the snail, Afrolittorina pyramidalis, and the barnacle, Tesseropora rosea) by quantifying their patterns of abundance and size, and inferring pulses of recruitment from size-frequency distributions, at multiple spatial scales spanning a 600-km region in south-eastern Australia and encompassing roughly the southern third of their geographical ranges. At the regional scale, abundances for all species were, as predicted, dramatically lower at their range limits. This decline was not gradual, however, because there were large variations in abundance at smaller spatial scales, and abrupt declines at the south-eastern corner of Australia. Size did not change towards the range limit for any species, but size-frequency distributions suggested a decline in the frequency of recruitment events at the range limit for T. rosea. We conclude that the abundant-centre hypothesis is not an appropriate model for abundance distributions of benthic marine invertebrates with planktonic larvae, because of the vagaries of dispersal and recruitment interacting with complex current patterns along non-uniform coastlines

    Studies on physiologic specialisation of albugo candida causing white blister on broccoli in Victoria

    Full text link
    White blister caused by oomycete Albugo candida (Pers. Ex. Lev.) Kuntze, (AC), is an important disease affecting many cruciferous hosts, including vegetable brassicas. The outbreaks of white blister in broccoli and cauliflower crops (Brassica oleracea var. italica and var. botrytis) in Southern Australia in the last three years led to restrictions on movement of fresh produce and seedlings from the disease-affected areas. Current classification of AC races is based on physiologic specialisation of this pathogen. Race 9 has been identified to cause white blister on B. oleracea in the USA. We report on specialisation of AC causing disease in Victorian broccoli crops and the use of molecular tools for the separation of AC races. In a glasshouse, 12 Brassicaceae species/varieties replicated 6 times, were inoculated twice at the fully developed cotyledon stage with a distilled water suspension of zoosporangia (1x104 per ml) collected from a single broccoli leaf. Two weeks after inoculation the incidence of white blister on cotyledons and seedling leaves of cauliflower, broccoli, black mustard and Indian mustard was 79.7, 78.4, 73.7 and 6.9% respectively. Cabbage plants were symptomless indicating that further specialisation of the pathogen may have occurred in Australia. High disease incidence among black mustard plants shows that the Australian isolate differs from overseas AC race 9. The interaction of a number of B. oleracea varieties to a range of AC isolates from various hosts will be investigated. Degenerate primers are now being used to amplify actin and &beta;-tubulin genes to identify race specific polymorphisms in AC isolates from three different hosts (wild radish, Chinese cabbage, and broccoli). Differing PCR amplification efficiencies from broccoli and wild radish isolates using degenerate actin primers indicates sequence differences in the two isolates. The fragments are now being cloned and sequenced for race comparison.<br /

    POMICS: A Simulation Disease Model for Timing Fungicide Applications in Management of Powdery Mildew of Cucurbits

    Get PDF
    A weather-based simulation model, called Powdery Mildew of Cucurbits Simulation (POMICS), was constructed to predict fungicide application scheduling to manage powdery mildew of cucurbits. The model was developed on the principle that conditions favorable for Podosphaera xanthii, a causal pathogen of this crop disease, generate a number of infection cycles in a single growing season. The model consists of two components that (i) simulate the disease progression of P. xanthii in secondary infection cycles under natural conditions and (ii) predict the disease severity with application of fungicides at any recurrent disease cycles. The underlying environmental factors associated with P. xanthii infection were quantified from laboratory and field studies, and also gathered from literature. The performance of the POMICS model when validated with two datasets of uncontrolled natural infection was good (the mean difference between simulated and observed disease severity on a scale of 0 to 5 was 0.02 and 0.05). In simulations, POMICS was able to predict high- and low-risk disease alerts. Furthermore, the predicted disease severity was responsive to the number of fungicide applications. Such responsiveness indicates that the model has the potential to be used as a tool to guide the scheduling of judicious fungicide applications

    Modelling of Tirapazamine effects on solid tumour morphology

    Get PDF
    Bioreductive drugs are in clinical practice to exploit the resistance from tumour microenvironments especially in the hypoxic region of tumour. We pre-sented a tumour treatment model to capture the pharmacology of one of the most prominent bioreductive drugs, Tirapazamine (TPZ) which is in clinical trials I and II. We calculated solid tumour mass in our previous work and then integrated that model with TPZ infusion. We calculated TPZ cytotoxicity, concentration, penetra-tion with increasing distance from blood vessel and offered resistance from micro-environments for drug penetration inside the tumour while considering each cell as an individual entity. The impact of these factors on tumour morphology is also showed to see the drug behaviour inside animals/humans tumours. We maintained the heterogeneity factors in presented model as observed in real tumour mass es-pecially in terms of cells proliferation, cell movement, extracellular matrix (ECM) interaction, and the gradients of partial oxygen pressure (pO2) inside tumour cells during the whole growth and treatment activity. The results suggest that TPZ high concentration in combination with chemotherapy should be given to get maximum abnormal cell killing. This model can be a good choice for oncologists and re-searchers to explore more about TPZ action inside solid tumour

    Mannose-binding lectin-deficient genotypes as a risk factor of pneumococcal meningitis in infants

    Get PDF
    OBJECTIVES: The objective of this study was to evaluate to evaluate the role of mannose-binding-lectin deficient genotypes in pneumococcal meningitis (PM) in children. METHODS: We performed a 16-year retrospective study (January 2001 to March 2016) including patients ≤ 18 years with PM. Variables including attack rate of pneumococcal serotype (high or low invasive capacity) and MBL2 genotypes associated with low serum MBL levels were recorded. RESULTS: Forty-eight patients were included in the study. Median age was 18.5 months and 17/48 episodes (35.4%) occurred in children ≤ 12 months old. Serotypes with high-invasive disease potential were identified in 15/48 episodes (31.2%). MBL2 deficient genotypes accounted for 18.8% (9/48). Children ≤ 12 months old had a 7-fold risk (95% CI: 1.6-29.9; p 12 months old. A sub-analysis of patients by age group revealed significant proportions of carriers of MBL2 deficient genotypes among those ≤ 12 months old with PM caused by opportunistic serotypes (54.5%), admitted to the PICU (Pediatric Intensive Care Unit) (46.7%) and of White ethnicity (35.7%). These proportions were significantly higher than in older children (all p<0.05). CONCLUSIONS: Our results suggest that differences in MBL2 genotype in children ≤12 months old affects susceptibility to PM, and it may have an important role in the episodes caused by non-high invasive disease potential serotypes

    Reversion of pH-Induced Physiological Drug Resistance: A Novel Function of Copolymeric Nanoparticles

    Get PDF
    The extracellular pH of cancer cells is lower than the intracellular pH. Weakly basic anticancer drugs will be protonated extracellularly and display a decreased intracellular concentration. In this study, we show that copolymeric nanoparticles (NPs) are able to overcome this “pH-induced physiological drug resistance” (PIPDR) by delivering drugs to the cancer cells via endocytosis rather than passive diffussion.As a model nanoparticle, Tetradrine (Tet, Pka 7.80) was incorporated into mPEG-PCL. The effectiveness of free Tet and Tet-NPs were compared at different extracellular pHs (pH values 6.8 and 7.4, respectively) by MTT assay, morphological observation and apoptotic analysis in vitro and on a murine model by tumor volume measurement, PET-CT scanning and side effect evaluation in vivo.<0.05) when the extracellular pH decreased from 7.4 to 6.8. Meanwhile, the cytotoxicity of Tet-NPs was not significantly influenced by reduced pH. In vivo experiment also revealed that Tet-NPs reversed PIPDR more effectively than other existing methods and with much less side effects.The reversion of PIPDR is a new discovered mechanism of copolymeric NPs. This study emphasized the importance of cancer microenvironmental factors in anticancer drug resistance and revealed the superiority of nanoscale drug carrier from a different aspect

    Multizone Paper Platform for 3D Cell Cultures

    Get PDF
    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures
    corecore