
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 

January 2010 

Patterns of demography for rocky-shore, intertidal invertebrates Patterns of demography for rocky-shore, intertidal invertebrates 

approaching their geographical range limits: tests of the abundant-centre approaching their geographical range limits: tests of the abundant-centre 

hypothesis in south-eastern Australia hypothesis in south-eastern Australia 

Eszter Z. Hidas 
ezh998@uow.edu.au 

David J. Ayre 
University of Wollongong, david_ayre@uow.edu.au 

Todd E. Minchinton 
University of Wollongong, tminch@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/scipapers 

 Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social 

and Behavioral Sciences Commons 

Recommended Citation Recommended Citation 
Hidas, Eszter Z.; Ayre, David J.; and Minchinton, Todd E.: Patterns of demography for rocky-shore, 
intertidal invertebrates approaching their geographical range limits: tests of the abundant-centre 
hypothesis in south-eastern Australia 2010, 1243-1251. 
https://ro.uow.edu.au/scipapers/624 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/scipapers
https://ro.uow.edu.au/smh
https://ro.uow.edu.au/scipapers?utm_source=ro.uow.edu.au%2Fscipapers%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=ro.uow.edu.au%2Fscipapers%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Fscipapers%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fscipapers%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fscipapers%2F624&utm_medium=PDF&utm_campaign=PDFCoverPages


Patterns of demography for rocky-shore, intertidal invertebrates approaching Patterns of demography for rocky-shore, intertidal invertebrates approaching 
their geographical range limits: tests of the abundant-centre hypothesis in south-their geographical range limits: tests of the abundant-centre hypothesis in south-
eastern Australia eastern Australia 

Abstract Abstract 
The abundant-centre hypothesis predicts that species' abundances peak at the centre of their 
geographical ranges and decline gradually towards their range limits. We tested predictions of this 
hypothesis for three rocky-shore, intertidal invertebrates with planktonic larvae (the whelk, Morula 
marginalba, the snail, Afrolittorina pyramidalis, and the barnacle, Tesseropora rosea) by quantifying their 
patterns of abundance and size, and inferring pulses of recruitment from size-frequency distributions, at 
multiple spatial scales spanning a 600-km region in south-eastern Australia and encompassing roughly 
the southern third of their geographical ranges. At the regional scale, abundances for all species were, as 
predicted, dramatically lower at their range limits. This decline was not gradual, however, because there 
were large variations in abundance at smaller spatial scales, and abrupt declines at the south-eastern 
corner of Australia. Size did not change towards the range limit for any species, but size-frequency 
distributions suggested a decline in the frequency of recruitment events at the range limit for T. rosea. We 
conclude that the abundant-centre hypothesis is not an appropriate model for abundance distributions of 
benthic marine invertebrates with planktonic larvae, because of the vagaries of dispersal and recruitment 
interacting with complex current patterns along non-uniform coastlines. 

Keywords Keywords 
approaching, eastern, invertebrates, intertidal, shore, rocky, demography, patterns, south, hypothesis, 
centre, abundant, tests, limits, range, geographical, their, australia 

Disciplines Disciplines 
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences 

Publication Details Publication Details 
Hidas, E. Z., Ayre, D. J. & Minchinton, T. E. (2010). Patterns of demography for rocky-shore, intertidal 
invertebrates approaching their geographical range limits: tests of the abundant-centre hypothesis in 
south-eastern Australia. Marine and Freshwater Research, 61 (11), 1243-1251. 

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/624 

https://ro.uow.edu.au/scipapers/624


Patterns of demography for rocky-shore, intertidal
invertebrates approaching their geographical
range limits: tests of the abundant-centre
hypothesis in south-eastern Australia

Eszter Z. HidasA, David J. AyreA and Todd E. MinchintonA,B

AInstitute for Conservation Biology & School of Biological Sciences,

University of Wollongong, NSW 2522, Australia.
BCorresponding author. Email: tminch@uow.edu.au

Abstract. The abundant-centre hypothesis predicts that species’ abundances peak at the centre of their geographical
ranges and decline gradually towards their range limits. We tested predictions of this hypothesis for three rocky-shore,
intertidal invertebrates with planktonic larvae (the whelk, Morula marginalba, the snail, Afrolittorina pyramidalis,
and the barnacle, Tesseropora rosea) by quantifying their patterns of abundance and size, and inferring pulses of

recruitment from size-frequency distributions, at multiple spatial scales spanning a 600-km region in south-eastern
Australia and encompassing roughly the southern third of their geographical ranges. At the regional scale, abundances
for all species were, as predicted, dramatically lower at their range limits. This decline was not gradual, however,

because there were large variations in abundance at smaller spatial scales, and abrupt declines at the south-eastern
corner of Australia. Size did not change towards the range limit for any species, but size-frequency distributions
suggested a decline in the frequency of recruitment events at the range limit for T. rosea. We conclude that the

abundant-centre hypothesis is not an appropriate model for abundance distributions of benthic marine invertebrates
with planktonic larvae, because of the vagaries of dispersal and recruitment interacting with complex current patterns
along non-uniform coastlines.

Additional keywords: abundant-centre hypothesis, biogeography, dispersal, distribution, planktonic larvae, recruit-

ment, size-frequency.

Introduction

A long-standing hypothesis in ecology predicts that the abun-
dance of a species is typically greatest at the centre of its geo-

graphical range and declines towards the edges, forming an
abundant-centre distribution (Grinnell 1917; Andrewartha and
Birch 1954; Brown et al. 1995). This type of distribution has
been attributed to either the dispersal of individuals outwards

from a ‘metropolis’ of high abundance (Grinnell 1917) or the
decreasing physiological tolerance of individuals to changes
in abiotic conditions (e.g. temperature) along an environmental

gradient towards their range limits (Shelford 1911). Although
a few terrestrial species have been shown to conform to the
abundant-centre distribution (e.g. Brown 1984; Caughley et al.

1988; review in Gaston 2003), recent empirical investigations
in marine habitats have found little support for this hypothesis
(Sagarin and Gaines 2002a, 2002b; Gilman 2005; Sagarin et al.
2006).

Many sessile and sedentary marine benthic species, particu-
larly those with a planktonic larval stage, depend largely on the
movements of oceanic currents for dispersal (Scheltema 1986;

Gaylord et al. 2002; Kinlan and Gaines 2003). Adult abundance

at locations across a species range is determined by a combina-
tion of the supply of larvae originating from local and distant
populations and local mortality rates (Caley et al. 1996; Eckert

2003). Because of the typically unidirectional flow of major
coastal currents (Gaylord and Gaines 2000), areas of greatest
local abundance across the range may simply be locations
downstream from productive upstream ‘source’ populations

(sensu Pulliam 1988), especially for species that have larvae
with long planktonic duration (Shanks et al. 2003). Dispersal
may therefore play the largest role in determining the patterns

of abundance of benthic marine species, and may not lead to
abundant-centre distributions. Tests of this prediction at appro-
priately large spatial scales are, however, limited to a few studies

in the northern hemisphere. On the western coast of the USA,
only 2 of 13 intertidal marine invertebrates had abundant-centre
distributions, whereas others either showed no obvious patterns
or had a skewed distribution in abundance from north to south

(Sagarin and Gaines 2002b; Gilman 2005). These studies con-
cluded that the underlying assumptions of the abundant-centre
hypothesis may conflict with specific characteristics of the life

histories and patterns of environmental variation across the
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ranges of marine species (Gilman 2005), and that future studies
should combine sampling geographical distributions of abun-

dance with demographic and physical data (Sagarin and Gaines
2002b).

Recruitment can be a key determinant of adult distribution

and abundance for benthic marine species (Gaines and
Roughgarden 1985; Minchinton and Scheibling 1991). There-
fore, quantifying the large-scale patterns of recruitment towards

the range limits for benthic marine invertebrates may give
insight into patterns of adult abundance. Measuring the size-
frequency distributions of already established populations has
proven a useful method of assessing changes in patterns of

recruitment (e.g. Zacherl et al. 2003; Gilman 2005; Lima et al.
2006). The absence of small individuals at range edges can
indicate sporadic or limited recruitment, whereas the absence of

large individuals can reveal post-recruitment mortality, or lack
of growth as a result of unfavourable environmental conditions
in the benthic habitat. Additionally, a decrease in size at range

edges may reflect a decline in individual performance (Gaston
2003; Gilman 2005).

Marine species along the eastern coast of Australia are
subjected to the southward-flowing, warm temperate East Aus-

tralian Current (EAC) (Fig. 1), which may have the potential to
influence their patterns of dispersal and abundance. The EAC
flows dominantly southwards from the Coral Sea to the north

of Sydney. Here, a large proportion of it deflects eastwards or
recirculates (Ridgway and Godfrey 1997), whereas about a third

continues southwards to the Tasman Sea, as a weaker, less
reliable current (Tilburg et al. 2001). This most southerly flow is

twice as strong in the austral summer than in winter, reflecting
seasonal changes in the intensity of anti-cyclonic eddies formed
along its path (Ridgway and Godfrey 1997). The transport of

larvae of benthic marine species may, therefore, be increasingly
less reliable from Sydney towards the south (Murray-Jones and
Ayre 1997; Sherman et al. 2008).

Here, we test predictions of the abundant-centre hypothesis
for three rocky-shore, intertidal invertebrate species with plank-
tonic larvae (M. marginalba, A. pyramidalis and T. rosea) and
southern range limits on the south-eastern coast of Australia

(Edgar 1997; Hidas et al. 2007). Specifically, we use surveys
of abundance and size structure across 600 km of the coast,
encompassing roughly the southern third of the geographical

ranges of these highly dispersive species, to test predictions that
recruitment occurs less frequently and abundance andmean size
decline gradually as these species approach their southern range

limits. A decline in abundance and episodic recruitment events
towards species’ range limits may reflect the decreased influ-
ence of the EAC as a source of immigrants into southern
populations, whereas a decline in mean size may reflect the

five-degree change in sea surface temperature that occurs
across this geographical range (Knox 1963; Ridgway and
Dunn 2003). Nevertheless, natural variations in habitat avail-

ability (Hidas et al. 2007), together with the seasonal and inter-
annual variability of the EAC (Ridgway and Godfrey 1997),
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Fig. 1. Map of the south-eastern coast of Australia, showing the four sectors and corresponding 16 locations used

to assess the densities and sizes of three rocky-shore, intertidal marine invertebrate species from Garie Beach,

New SouthWales (Sector 1), to their southern range limits at Cape Conran, Victoria (Sector 4). NinetyMile Beach

is a 150-km stretch of continuous sandy beach, followed southward to Wilsons Promontory by mangrove forests,

together forming a 300-km gap in suitable habitat for rocky-shore, intertidal species. Flow patterns of the East

Australian Current (EAC) and South Australian and Zeehan Currents (SAC/ZC) are also shown.
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may contribute to very different patterns of recruitment, size and
adult distributions.

Materials and methods

Study region and species

We measured the abundances and sizes of three common and
abundant rocky-shore, intertidal invertebrates that have plank-
tonic larval stages, namely M. marginalba, A. pyramidalis and

T. rosea. Sampling was carried out at 16 locations along 600 km
of coastline from Garie Beach in New South Wales (NSW)
(348100S, 1518040E) to Cape Conran in Victoria (378080S,
1488070E) in south-eastern Australia (Fig. 1).

Morula marginalba ranges from northern Queensland to
Rame Head in eastern Victoria (Edgar 1997; Fig. 1), although
six individuals have recently been observed 80 km further south-

west at Cape Conran (C. Perrin, pers. comm.). A. pyramidalis
and T. rosea are also distributed from Queensland to Cape
Conran (Edgar 1997; Fig. 1), although there have also been

occasional sightings of T. rosea west of Wilsons Promontory
in Victoria (T. Minchinton, pers. obs.), as well as in Western
Australia (Jones 1990). Therefore, sampling encompassed
roughly the southern third of the geographical ranges for these

species.
Morula marginalba, T. rosea and A. pyramidalis inhabit

microhabitats ranging from crevices and rockpools to emergent

rock, live at different heights on the shore, and feed on an
array of different organisms, from barnacles and molluscs to
microalgae and plankton (Denley 1981; Moran et al. 1984;

Caffey 1985; Moran 1985; Fairweather 1988; Chapman and
Underwood 1994). Although the mode of larval release varies
among these species, all have a planktonic larval stage at some

phase in their development (Wisely andBlick 1964; Underwood
1974; Caffey 1985). The main breeding periods for all three
species are similar (Wisely and Blick 1964; Underwood 1974;
Caffey 1985), from austral mid-summer to late autumn; there-

fore, southward transport of their larvae is likely to be strongly
influenced by the EAC (Ridgway and Godfrey 1997). Larval
duration of A. pyramidalis is unknown, whereas the larvae of

M. marginalba and T. rosea are believed to spend up to several
weeks in the water column (Caffey 1985; P. Fairweather, pers.
comm.). Therefore, to capture temporal variability in recruit-

ment for these species, we sampled on three occasions separated
by 4 months, namely May 2005, September 2005 and January
2006.

Sampling design

We used a hierarchical sampling design to assess differences
in patterns of abundance and size of the three study species at
multiple spatial scales. We divided the 600-km study region,

corresponding to the southern third of the distributional range of
the species, into four sectors of roughly equal lengths of coast-
line, with each spanning 70–110 km (Fig. 1). Four representa-

tive locations were selected within each sector (each covering
100–140m of coast) and three replicate sites were selected at
each location (each covering 30m of coast) (Fig. 1). Sectors
were separated by 30–100 km, locations by 10–50 km, and sites

by up to 50m. This allowed an assessment across the study

region of the changes in patterns of abundance and size among
locations within sectors (tens of kilometres) and among sectors

(hundreds of kilometres).
Locations were chosen that displayed similar physical

characteristics. Wherever possible, they were on moderately

exposed headlands, facing the open ocean and, except at two
locations, a platform slope ofo10 degrees. Rock type could not
be controlled because this varied naturally between siltstone,

sandstone, mudstone, granite and basalt, with themajority being
sandstone/siltstone. Sites were ,30m alongshore and of vari-
able intertidal extent (6–50m), depending on the slope of the
platform.

Sampling methods

Abundances for each species at each site were assessed by
estimating density with haphazardly placed quadrats on the

shore. All microhabitats (i.e. rockpools, crevices and emergent
rock) had the opportunity to be sampled, depending on their
availability at that site. At each site, we sampled 10 quadrats of

2m� 2m for M. marginalba, 20 quadrats of 0.5m� 0.5m for
A. pyramidalis and 20 quadrats of 0.15m� 0.15m for T. rosea.
The means of these replicate quadrats gave one estimate of
density for each species at each site, and sites were used as

replicates in statistical analyses.
Size-frequency distributions for each species at each

location were obtained by measuring to the nearest 0.5mmwith

Vernier calipers a haphazard sample of 300–500 individuals
across two sites (i.e. 150–200 individuals per site). Bias towards
any size class relating to the position on shore or microhabitat

was avoided by measuring individuals across the entire
vertical and horizontal extent of the species within a site. For
A. pyramidalis, measurements were made from the apex to
the outermost tip of the aperture (Chapman 1997), and for

M. marginalba and T. rosea, the length of the aperture was
measured (Denley 1981; Moran et al. 1984).

Data and statistical analyses

To test for significant differences in densities among sectors
(fixed factor) and among locations nested within sectors (ran-
dom factor) for each of the study species, we used mixed model,

nested analyses of variance (ANOVA) with the statistical
package SPSS 12 (SPSS, Chicago, IL, USA). Density for each
species at a site was estimated as the mean of the densities from
each of the three sampling times (with density at each sampling

time estimated as the mean of the replicate quadrats at that site).
Occasionally, some locations could not be sampled because
of adverse weather conditions, and data for any sites that had

fewer than two sampling times were omitted. Densities were
log-transformed before analysis to satisfy the assumptions of
ANOVA. For thismixedmodel ANOVA, a standardF-ratio was

used to assess statistical significance for the fixed factor, and a
Wald Z-value for the nested random factor. The Wald test is
commonly used to test the statistical significance of covariance

parameters in a mixed model, and allows calculation of a
Z statistic by dividing the parameter estimate by its standard
error (Littell et al. 1996).

To test for changes in themean size as the species approached

their range limits, we performed linear regression analyses on

Biogeography of rocky intertidal invertebrates Marine and Freshwater Research 1245



untransformed data using the SYSTAT 10 (Systat Software,
Chicago, IL, USA) statistical package. For M. marginalba

and A. pyramidalis, we plotted the weighted mean size from
the three sampling times against distance (measured along
the coastline) from the range limit, whereas for T. rosea, we

analysed these patterns of the weighted mean size for juvenile
recruits (o3-mm aperture length) and adults (�3-mm aperture
length) separately (Denley 1981).

To look for evidence of pulses of recruits, indicated by the
presence of small individuals, size-frequency distributions from
the three sampling times were combined (following examina-
tion at each sampling time to ensure that size structures were

similar). For the two gastropod species, each location appeared
to have a unimodal distribution and it was impossible to
distinguish among cohorts (see Results); therefore, no further

analysis was performed. For T. rosea, however, cohort analysis
was carried out by using the probability paper technique
(Harding 1949; Cassie 1954). This method involves plotting

on probability paper the cumulative percentage distribution of
sizes of a species at each location, and identifying points of
inflexion that represent the separation of distinct size cohorts.
To test for a significant change in the frequency of recruitment

towards the range limit of T. rosea, we then plotted the number
of cohorts at each location against distance from the range limit
and carried out a linear regression analysis on untransformed

data using SYSTAT 10.

Results

Patterns of abundance

The abundance of M. marginalba, A. pyramidalis and T. rosea

varied substantially across the study region along the south-
eastern coast of Australia. Densities for all three species were
dramatically and significantly smaller within Sector 4, at the
southern range limit, than in Sectors 1–3, closer to the middle

of the species’ ranges (Fig. 2; Table 1). Mean densities were
8–100-fold greater in Sectors 1–3, ranging from 24.3 to 41.9
individuals per quadrat for M. marginalba, from 6.3 to 18.1

individuals per quadrat for A. pyramidalis, and from 74.6 to
134.4 individuals per quadrat for T. rosea, than in Sector 4 of
the range limit, where mean densities were only 0.4, 0.6 and

16.4 individuals per quadrat, respectively, for the three species
(Fig. 2). T. rosea exhibited a gradual pattern of decline in density
towards the range limit from Sector 1 to Sector 4; the densities of
the two gastropods,M.marginalba andA. pyramidalis, followed

the same general pattern, although abundances were greatest in
Sector 2 and there was an abrupt decline in Sector 4 at the range
limit.

Densities also varied substantially among locations within
sectors for all three species, although differences among loca-
tions were statistically significant only for T. rosea (Fig. 2;

Table 1). For all species, the magnitude of variation in densities
among locationswithin sectorswas generally the same across all
sectors, reflecting considerable variability among sites (Fig. 2).

Indeed, for T. rosea, locations only 10 km apart differed in
density by up to 180-fold (Fig. 2). Furthermore, at least one
location within Sector 1 for each species had a similar mean
density to a location in Sector 3, or in the case of T. rosea,

Sector 4.

Patterns of size and recruitment

The size-frequency distributions of the two gastropods did not
show any distinguishable changes in patterns among locations

towards the range limit (Fig. 3). Each location appeared to have
a unimodal distribution, and it was thus impossible to distin-
guish among cohorts (Fig. 3). In addition, at most locations,

individuals were not small enough to be categorised as recruits.
Mean size decreased slightly towards the range limit for
M. marginalba, and increased slightly for A. pyramidalis;

however, was not significantly related to distance from the range
limit for either species (M. marginalba: r2¼ 0.03, P¼ 0.55,
n¼ 16; A. pyramidalis: r2¼ 0.09, P¼ 0.29, n¼ 16).

The size-frequency distribution of T. rosea showed some

evidence for fewer very small and very large individuals at
locations near its range limit (Fig. 3). There was, however, no
significant relationship between the mean size (for all indivi-

duals) and distance from the range limit (r2¼ 0.11, P¼ 0.26,
n¼ 16). When the mean sizes of recruits (o3mm) and adults
(�3mm) were plotted separately against the distance from the

range limit, there was a significant increase towards the range
limit for the mean size of recruits (r2¼ 0.49, P¼ 0.01, n¼ 16)
and a decrease for the mean size of adults, although this

relationship was not significant (r2¼ 0.25, P¼ 0.07, n¼ 16).
Cohort analysis revealed that the number of age classes of
T. rosea at each location decreased significantly towards the
range limit (r2¼ 0.37, P¼ 0.02, n¼ 16), with three or four

cohorts identified at locations in the northern sectors, but only
two or three predominant cohorts at locations in the most
southerly sector at the range limit for this species (Fig. 3).

Discussion

Surprisingly, large-scale patterns of abundance among sectors
for the intertidal, rocky-shore barnacle, Tesseropora rosea,
provided evidence for an abundant-centre distribution in the

southern third of its geographical range along the south-eastern
coast of Australia. Although the abundances of the two inter-
tidal, rocky-shore gastropods, Morula marginalba and Afro-

littorina pyramidalis, also declined dramatically at their range
limits, there was no evidence of a gradual decline in abundance
towards the range limit, as would be expected for an abundant-

centre distribution (Brown 1984; Sagarin and Gaines 2002a).
Furthermore, for all three species, smaller-scale patterns of
abundance among locations did not appear to be a simple
function of position within the range, because, in some cases,

there were large variations in abundance among locations only
tens of kilometres apart. Therefore, the processes determining
the abundances of these species are likely to vary considerably

towards, and sharply at, their southern range limit. Moreover,
the predictability of the abundances of each species varied with
scale at which the abundance was assessed. Sagarin and Gaines

(2002b) and Gilman (2005) found similarly large variations
in the large- and small-scale patterns of abundance along
the geographical ranges of 13 rocky-shore, intertidal marine

invertebrates on the western coast of the USA.
The south-eastern coast of Australia has both a spatially and

temporally variable marine environment, which may influence
the abundance patterns of our study species. Most importantly,

the EAC deflects eastwards just north of Sydney, and only

1246 Marine and Freshwater Research E. Z. Hidas et al.
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a fraction of it continues southwards as a weaker current,

forming powerful anti-cyclonic eddies along its path (Ridgway
and Godfrey 1997), which have a strong potential to influence
the shoreline abundance of adults and distribution of species

with planktonic larvae (Gaylord and Gaines 2000). Although
the size-frequency distribution patterns of M. marginalba and
A. pyramidalis did not reveal any significant changes in recruit-

ment from north to south, the peaks in the abundances for these
species in Sector 2 of our study region, on the mid-southern
coast of NSW, coincide with the location of offshore eddies,

which are likely to have the potential in some seasons and years
to recirculate larvae of these species back to their shores of
origin. The size-frequency patterns of the barnacle T. rosea,
however, gave evidence of more successful recent recruitment

events at northern locations approaching the middle of the
species range. As predicted, recruitment events for this species
may thus be less frequent, or survival of recruits may be

decreased, towards the south, possibly due to the decreased
reliability of the EAC for dispersal from north to south (Murray-
Jones and Ayre 1997; Sherman et al. 2008). This hypothesis

would be consistent with the results of Caffey (1985), who
examined recruitment of T. rosea in the middle of its geogra-
phical distribution, and found more frequent recruitment events

at more northern locations along the NSW coast than in the
south.

A recent survey ofmitochondrial DNA-sequence variation in
samples of T. rosea and M. marginalba collected from sites

arrayed along the coast from Bermagui in the north to Cape
Conran in the south revealed minimal divergence (y¼ 0),
suggesting that there is a high degree of genetic connectivity

among populations of these species along this coast (Ayre et al.
2009). Given the predominantly southward flow of the EAC,
this implies that populations at the range limits for these species

are likely to comprise recruits from upstream ‘source’ popula-
tions (sensu Pulliam 1988). This supply of recruits, however,
may not always be reliable, given the high variability in the flow
of the EAC among years, and among seasons (Ridgway and

Godfrey 1997). Indeed, this was reflected by the decline in the
number of cohorts on shores near the range limit of T. rosea.
The size-frequency distribution patterns of M. marginalba and

A. pyramidalis, however, suggested that our sampling did not
include a period of recruitment anywhere within the range of

sampling, and thus that recruitment is episodic for these species.

Such patterns suggest that edge populations are likely to be
limited by successful recruitment because they are more likely
to miss pulses of recruitment than are those at the centre.

Assessing abundance and size-frequency patterns of our study
species through different seasons over multiple years would
help confirm this.

Range boundaries of coastal marine species can occur at
regions where there are marked changes in near-shore current
and oceanographic conditions (Gaylord and Gaines 2000;

Wares et al. 2001). South of the NSW and Victoria border
(Fig. 1), warm temperate waters transported by the EAC from
the north meet cool temperate waters derived from western
currents (e.g. South Australian and Zeehan Currents) and wind-

driven and tidal forcingwithin Bass Strait (Knox 1963; Ridgway
and Godfrey 1997; Ridgway and Condie 2004; Sandery and
Kämpf 2007). This region coincides exactly with the range

limits, and dramatic decline in abundances, of our three study
species, and for T. rosea, the disappearance from the shore of
very large individuals (Bennett and Pope 1953; Knox 1963;

O’Hara and Poore 2000). In addition, coastal geomorphology
changes abruptly in this south-eastern corner of the region, with
the generally north–south coastline veering to the south-west

(Fig. 1), potentially resulting in the offshore transport of larvae.
Finally, a five-degree sea-surface temperature difference, which
also occurs in this region (Knox 1963; Ridgway and Dunn
2003), may contribute to limiting both the early and long-term

survival of individuals of our study species on the shore. This
may be particularly true for range-limit populations of T. rosea
and M. marginalba, because their connectivity to populations

from Bermagui at more northern locations of the coast (Ayre
et al. 2009) may potentially render them less able to adapt
genetically to ‘marginal conditions’ at the range edge (Sagarin

et al. 2006). Assessing post-settlement mortality of recruits and
adults from the middle to the limit of the range may be an
appropriate future study to investigate this hypothesis.

Finally, changes in habitat availability, such as natural

variations in rock type and associated changes in habitat
structure, may limit the supply, survival or persistence of
recruits of our study species at their range limits (Gaston

2003). The range limit of our three species also corresponds to
the northern limit of a biogeographical barrier for rocky-shore,

Table 1. Mixed model, nested analyses of variance of the densities of three rocky-shore, intertidal marine invertebrates, Morula marginalba,

Afrolittorina pyramidalis and Tesseropora rosea, on the south-eastern coast of Australia

The significance of the nested random factor is indicated (Wald Z test)

Species Parameter d.f. SS F Wald Z P

M. marginalba Sector 3 15.225 12.38 0.001

Location (sector) 10 6.462 1.33 0.183

Residual 28

A. pyramidalis Sector 3 13.329 40.34 0.000

Location (sector) 12 2.526 1.57 0.116

Residual 32

T. rosea Sector 3 2.716 5.28 0.017

Location (sector) 11 30.046 2.20 0.028

Residual 30
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Fig. 3. Size-frequency distributions of the three rocky-shore, intertidal marine invertebrate species, (a) M. marginalba,

(b) A. pyramidalis and (c) T. rosea, betweenMay 2005 and January 2006 at 13 locations fromGarie Beach, New SouthWales, to

near their southern range limits at Rame Head, Victoria. Numbers in top right-hand corner show sample sizes. Two range limit

locations, Point Hicks and Cape Conran (see Fig. 1), are not included here, because insufficient numbers of individuals were

available at these locations. Vertical lines separate cohorts.
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intertidal marine species (Hidas et al. 2007; Ayre et al. 2009),
composed of a 300-km stretch of sandy shore (Ninety Mile

Beach) and mangrove forest (between Cape Conran and
Wilsons Promontory; Fig. 1), separating the nearest natural
rocky intertidal habitats. Between the border of NSW and

Victoria, and the northern limit of the biogeographical barrier
(Mallacoota to Cape Conran, Fig. 1), the generally flat, wide,
sandstone rocky platforms of southern NSW are replaced at

several locations by steep, granite slopes (E. Hidas, pers. obs.).
This change in potential habitat suitability, followed south by
the Ninety Mile Beach biogeographical barrier, may reduce
the ability of the species to colonise more southern locations.

Although all three study species have planktonic larvae that
spend up to a few weeks in the water column (Wisely and Blick
1964; Underwood 1974; Caffey 1985), recent genetic investiga-

tions into the connectivity of populations of rocky, intertidal
marine species across the Ninety Mile Beach biogeographical
barrier have revealed that degree of population connectivity

across this barrier is not related to the mode of larval dispersal,
but rather, to flexibility in habitat utilisation (Ayre et al. 2009).

The present study supports the mounting evidence (Sagarin
and Gaines 2002b; Gilman 2005; Sagarin et al. 2006) that the

abundant-centre hypothesis is too simplistic a model to predict
the abundance distributions of planktonically developing
benthic marine invertebrates. Our results indicate that abun-

dances of rocky-shore, intertidal invertebrate species are highly
variable and perhaps unpredictable across the range, and that
their recruitment can be extremely patchy and episodic. This

finding is important when considering the sizes and spacing
of coastal marine reserves (Shanks et al. 2003) and the impacts
of climate change on the current patterns and potential range

extensions of intertidal rocky-shore invertebrates (Sagarin et al.
1999; Zacherl et al. 2003; Lima et al. 2006; Pitt et al. 2010)
along the south-eastern coast of Australia.
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