200 research outputs found

    A theoretical model for predicting Schottky-barrier height of the nanostructured silicide-silicon junction

    Get PDF
    ABSTRACT In this work, we have performed the first-principles calculations to investigate the Schottky barrier height (SBH) of various nanostructured silicide-silicon junctions. As for the silicides, PtSi, NiSi, TiSi2, and YSi2 have been used. We find that EFiF = EFi – EF, where EFi and EF are the intrinsic Fermi level of the semiconductor part and the Fermi level of the junction, respectively, is unchanged by nanostructuring. From this finding, we suggest a model, a symmetric increase of the SBH (SI) model, to properly predict SBHs of nanostructured silicide-silicon junctions. We also suggest two measurable quantities for the experimental validation of our model. The effect of our SI model applied to nanostructures such as nanowires and ultra-thin-bodies is compared with that of the widely used previous SBH model

    B+-tree Index Optimization by Exploiting Internal Parallelism of Flash-based Solid State Drives

    Full text link
    Previous research addressed the potential problems of the hard-disk oriented design of DBMSs of flashSSDs. In this paper, we focus on exploiting potential benefits of flashSSDs. First, we examine the internal parallelism issues of flashSSDs by conducting benchmarks to various flashSSDs. Then, we suggest algorithm-design principles in order to best benefit from the internal parallelism. We present a new I/O request concept, called psync I/O that can exploit the internal parallelism of flashSSDs in a single process. Based on these ideas, we introduce B+-tree optimization methods in order to utilize internal parallelism. By integrating the results of these methods, we present a B+-tree variant, PIO B-tree. We confirmed that each optimization method substantially enhances the index performance. Consequently, PIO B-tree enhanced B+-tree's insert performance by a factor of up to 16.3, while improving point-search performance by a factor of 1.2. The range search of PIO B-tree was up to 5 times faster than that of the B+-tree. Moreover, PIO B-tree outperformed other flash-aware indexes in various synthetic workloads. We also confirmed that PIO B-tree outperforms B+-tree in index traces collected inside the Postgresql DBMS with TPC-C benchmark.Comment: VLDB201

    Analysis of drain-induced barrier rising in short-channel negative-capacitance FETs and its applications

    Get PDF
    We investigate the performance of hysteresis-free short-channel negative-capacitance FETs (NCFETs) by combining quantum-mechanical calculations with the Landau-Khalatnikov equation. When the subthreshold swing (SS) becomes smaller than 60 mV/dec, a negative value of drain-induced barrier lowering is obtained. This behavior, drain-induced barrier rising (DIBR), causes negative differential resistance in the output characteristics of the NCFETs. We also examine the performance of an inverter composed of hysteresis-free NCFETs to assess the effects of DIBR at the circuit level. Contrary to our expectation, although hysteresis-free NCFETs are used, hysteresis behavior is observed in the transfer properties of the inverter. Furthermore, it is expected that the NCFET inverter with hysteresis behavior can be used as a Schmitt trigger inverter

    Toward a Better Understanding of Loss Functions for Collaborative Filtering

    Full text link
    Collaborative filtering (CF) is a pivotal technique in modern recommender systems. The learning process of CF models typically consists of three components: interaction encoder, loss function, and negative sampling. Although many existing studies have proposed various CF models to design sophisticated interaction encoders, recent work shows that simply reformulating the loss functions can achieve significant performance gains. This paper delves into analyzing the relationship among existing loss functions. Our mathematical analysis reveals that the previous loss functions can be interpreted as alignment and uniformity functions: (i) the alignment matches user and item representations, and (ii) the uniformity disperses user and item distributions. Inspired by this analysis, we propose a novel loss function that improves the design of alignment and uniformity considering the unique patterns of datasets called Margin-aware Alignment and Weighted Uniformity (MAWU). The key novelty of MAWU is two-fold: (i) margin-aware alignment (MA) mitigates user/item-specific popularity biases, and (ii) weighted uniformity (WU) adjusts the significance between user and item uniformities to reflect the inherent characteristics of datasets. Extensive experimental results show that MF and LightGCN equipped with MAWU are comparable or superior to state-of-the-art CF models with various loss functions on three public datasets.Comment: Accepted by CIKM 202

    The local translation of KNa in dendritic projections of auditory neurons and the roles of KNa in the transition from hidden to overt hearing loss

    Get PDF
    Local and privileged expression of dendritic proteins allows segregation of distinct functions in a single neuron but may represent one of the underlying mechanisms for early and insidious presentation of sensory neuropathy. Tangible characteristics of early hearing loss (HL) are defined in correlation with nascent hidden hearing loss (HHL) in humans and animal models. Despite the plethora of causes of HL, only two prevailing mechanisms for HHL have been identified, and in both cases, common structural deficits are implicated in inner hair cell synapses, and demyelination of the auditory nerve (AN). We uncovered that N

    Optical TCAD on the Net: A tight-binding study of inter-band light transitions in self-assembled InAs/GaAs quantum dot photodetectors

    Get PDF
    A new capability of our well-known NEMO 3-D simulator (Ref. Klimeck et al., 2007 [10]) is introduced by carefully investigating the utility of III–V semiconductor quantum dots as infrared photodetectors at a wavelength of 1.2–1.5 μm. We not only present a detailed description of the simulation methodology coupled to the atomistic sp3d5s∗ tight-binding band model, but also validate the suggested methodology with a focus on a proof of principle on small GaAs quantum dots (QDs). Then, we move the simulation scope to optical properties of realistically sized dome-shaped InAs/GaAs QDs that are grown by self- assembly and typically contain a few million atoms. Performing numerical experiments with a variation in QD size, we not only show that the strength of ground state inter- band light transitions can be optimized via QD size-engineering, but also find that the hole ground state wavefunction serves as a control factor of transition strengths. Finally, we briefly introduce the web-based cyber infrastructure that is developed as a government- funded project to support online education and research via TCAD simulations. This work not only serves as a useful guideline to experimentalists for potential device designs and other modelers for the self-development of optical TCAD, but also provides a good chance to learn about the science gateway project ongoing in the Republic of Korea

    Geometrically Induced Multiple Coulomb Blockade Gaps

    Full text link
    We have theoretically investigated the transport properties of a ring-shaped array of small tunnel junctions, which is weakly coupled to the drain electrode. We have found that the long range interaction together with the semi-isolation of the array bring about the formation of stable standing configurations of electrons. The stable configurations break up during each transition from odd to even number of trapped electrons, leading to multiple Coulomb blockade gaps in the the I−VI-V characteristics of the system.Comment: 4 Pages (two-columns), 4 Figures, to be published in Physical Review Letter

    Mitigation on the AIM Cryptanalysis

    Get PDF
    Post-quantum signature schemes based on the MPC-in-the-Head (MPCitH) paradigm are recently attracting significant attention as their security solely depends on the one-wayness of the underlying primitive, providing diversity for the hardness assumption in post-quantum cryptography. Kim et al. proposed AIM as an MPCitH-friendly one-way function characterized by large algebraic S-boxes and parallel design, which lead to short signature size (CCS 2023). Recently, Liu et al. proposed a fast exhaustive search attack on AIM (ePrint 2023), which degrades the security of AIM by up to 13 bits. While communicating with the authors, they pointed out another possible vulnerability on AIM. In this paper, we propose AIM2 which mitigates all the vulnerabilities, and analyze its security against algebraic attacks
    • …
    corecore