
Mitigation on the AIM Cryptanalysis

Seongkwang Kim1, Jincheol Ha2, Mincheol Son2, and Byeonghak Lee1

1 Samsung SDS, Seoul, Korea,
{sk39.kim, byghak.lee}@samsung.com

2 KAIST, Daejeon, Korea,
{smilecjf, encrypted.def}@kaist.ac.kr

Abstract. Post-quantum signature schemes based on the MPC-in-the-Head (MPCitH) paradigm are re-
cently attracting significant attention as their security solely depends on the one-wayness of the under-
lying primitive, providing diversity for the hardness assumption in post-quantum cryptography. Kim et
al. proposed AIM as an MPCitH-friendly one-way function characterized by large algebraic S-boxes and
parallel design, which lead to short signature size (CCS 2023).
Recently, Liu et al. proposed a fast exhaustive search attack on AIM (ePrint 2023), which degrades the
security of AIM by up to 13 bits. While communicating with the authors, they pointed out another possible
vulnerability on AIM. In this paper, we propose AIM2 which mitigates all the vulnerabilities, and analyze
its security against algebraic attacks.

1 Introduction

MPC-in-the-Head (MPCitH), proposed by Ishai et al. [IKOS07], is a paradigm to construct a zero-knowledge
proof (ZKP) system from a multiparty computation (MPC) protocol. Recently, the MPCitH paradigm is uti-
lized as a building block of a post-quantum signature scheme since the security of MPCitH-based signature
schemes solely depends on the security of the one-way function used in key generation.

Kim et al. [KHS+22] proposed an MPCitH-friendly one-way function AIM, and a signature scheme AIMer
based on the BN++ proof [KZ22] of a preimage of a public key under AIM. AIM features a parallel structure
and Mersenne S-boxes to fully enjoy repeated multipliers with high resistance to algebraic attacks. However,
Liu et al. proposed a fast exhaustive search on AIM [LMOM23], which exploits the fact that AIM allows a
low-degree system of equations in λ Boolean variables, where λ is the security parameter. Furthermore, Liu
found a new low-degree system of equations in 2λ variables.3 While it does not break AIM in a plausible
assumption, it harms the original security claim in [KHS+22].

In this paper, we overview those two attacks and propose a new version of AIM, dubbed AIM2. The main
difference of AIM2 from AIM is three-fold:

1. Inverse Mersenne S-box: the S-box in the first round is placed in the opposite direction. In this way, we
can make it harder to build a large number of equations compared to AIM.

2. Constant addition to the input of S-boxes: distinct constants are added to the inputs of first-round S-
boxes. It differentiates the inputs of S-boxes with negligible cost.

3. Increasing exponents for S-boxes: we opt for larger exponents for some Mersenne S-boxes in order to
make it harder to establish a low-degree system of equations in ≈ λ Boolean variables from a single
evaluation of AIM.

We also analyze the security of AIM2 against various attacks. Finally, we will discuss how our patch affects
efficiency of the resulting signature scheme.

3 In private communication.



1.1 Notation

Throughout this paper, we denote (bit-)length of AIM and AIM2 as n. Unless stated otherwise, all logarithms
are to the base 2. For two vectors a and b over a finite field, their concatenation is denoted by a∥b. For a
positive integer m, we write [m] = {1, . . . ,m}. For an integer x and a boolean vector y, hwn(x) and hw(y)
denotes the Hamming weight of x mod 2n − 1 in its binary representation and the Hamming weight of y,
respectively. For α = (α1, . . . , αn) ∈ Fn

2 and x = (x1, . . . , xn), monomial representation xα means that∏n
i=1 x

αi
i .

In this document, addition is usually operated on a binary field, which can be seen as bitwise exclusive-OR
(XOR). When we want to emphasize this, we will write ⊕ to denote addition.

2 AIM and AIMer

AIM was proposed as an MPCitH-friendly symmetric primitive with high resistance to algebraic attacks [KHS+22].
AIMer is a signature scheme obtained by combining AIM with the BN++ proof system [KZ22].

Given the input/output size n and an (ℓ+ 1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1,

AIM : {0, 1}n × F2n → F2n

is defined by

AIM(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ](pt)⊕ pt

where each function will be described below.4 See Figure 2 for the pictorial description of AIM with ℓ = 3.

Mer[e1]

Mer[e2]

Mer[e3]

Linpt Mer[e∗] ct

XOF[iv]

Fig. 1: The AIM-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature scheme,
and (iv, ct) (in blue) is the corresponding public key.

NON-LINEAR COMPONENTS. In AIM, S-boxes are exponentiation by Mersenne numbers over a large field.
More precisely, for x ∈ F2n ,

Mer[e](x) = x2e−1

for some e. Note that this map is a permutation if gcd(e, n) = 1. As an extension, Mer[e1, . . . , eℓ] : F2n → Fℓ
2n

is defined by
Mer[e1, . . . , eℓ](x) = Mer[e1](x)∥ . . . ∥Mer[eℓ](x).

4 In the AIMer scheme, the initial vector iv is public and we claim the one-wayness of AIM for a fixed iv.

2



LINEAR COMPONENTS. AIM includes two types of linear components: an affine layer and feed-forward. The
affine layer consists of multiplication by an n × ℓn random binary matrix Aiv and addition by a random
constant biv ∈ Fn

2 . The matrix
Aiv =

[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2 )ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an
extendable-output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented
by a linearized polynomial Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n)

ℓ,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

By abuse of notation, we will write Ax to denote
∑

1≤i≤ℓ Liv,i(xi). Feed-forward operation, which is addition
by the input itself, makes the entire function non-invertible.

RECOMMENDED PARAMETERS. Recommended sets of parameters for λ ∈ {128, 192, 256} are given in Table
1. The irreducible polynomials for extension fields F2128 , F2192 , and F2256 are the same as those used in Rain
[DKR+22].

Scheme λ n ℓ e1 e2 e3 e∗

AIM-I 128 128 2 3 27 - 5
AIM-III 192 192 2 5 29 - 7
AIM-V 256 256 3 3 53 7 5

Table 1: Recommended sets of parameters of AIM.

3 Algebraic Attack Models

In this section, we briefly introduce some algebraic attack models and their complexities. Throughout this
section, we will focus on constructing an overdetermined system of m equations in n Boolean variables
where the degree of each equation is denoted as di for i = 1, . . . ,m.

3.1 XL Algorithm with Independent Equations Model

The XL algorithm [CKPS00] is a generalization of the relinearization attack [KS99]. The XL algorithm extends
the system by multiplying all the monomials of degree D − di to the equation of degree di, resulting in∑m

i=1(
∑D−di

j=0

(
n
j

)
) equations of degrees at most D. As the extended system is of degrees at most D, at most∑D

i=1

(
n
i

)
monomials appear in the extended system. When the number of linearly independent equations

becomes greater than the number of monomials as D grows, one can solve the extended system of equations
by linearization.

The complexity of the XL attack depends on the number of linearly independent equations obtained
from the XL algorithm, while we can loosely upper bound the number of linearly independent equations by∑m

i=1

∑D−dj

j=0

(
n
j

)
.

Assumption 1 All the equations obtained while running the XL algorithm are linearly independent.

3



Under Assumption 1, which is in favor of the attacker, we can search for the (smallest) degree D such that

m∑
i=1

D−di∑
j=0

(
n

j

)
≥ TD (1)

where TD denotes the exact number of monomials appearing in the extended system of equations, which
is upper bounded by

∑D
i=1

(
n
i

)
. Once D is fixed, the extended system of equations can be solved by trivial

linearization whose time complexity is given as O (Tω
D), where the constant ω is the matrix multiplication

exponent.
In literature, Assumption 1 is not widely-used to estimate the security of a cryptosystem since it is re-

garded as too strong. The equations obtained while running the XL algorithm are linearly dependent with
non-negligible probability, and the degree D is much higher than one computed from Assumption 1. Ars et
al. [AFI+04] showed that the XL algorithm is in fact a redundant variant of the F4 algorithm [Fau99]. AIM
was claimed to be secure even if Assumption 1 is true [KHS+22].

3.2 Gröbner Basis Attack Model

The Gröbner basis attack is to solve a system of equations by computing its Gröbner basis. The attack consists
of the following steps.

1. Compute a Gröbner basis in the grevlex (graded reverse lexicographic) order.
2. Change the order of terms to obtain a Gröbner basis in the lex (lexicographic) order.
3. Find a univariate polynomial in this basis and solve it.
4. Substitute this solution into the Gröbner basis and repeat Step 3.

When a system of equations has only finitely many solutions in its algebraic closure, its Gröbner basis in the
lex order always contains a univariate polynomial. When a single variable of the polynomial is replaced by a
concrete solution, the Gröbner basis still remains a Gröbner basis of the “reduced” system, allowing one to
obtain a univariate polynomial again for the next variable. We refer to [SS21] for more details on Gröbner
basis computation.

The security of a cryptosystem against the Gröbner basis attack is usually estimated by the complex-
ity of the first step, which is the Gröbner basis computation in the grevlex order using F4/F5 algorithm
or its variants [Fau99, Fau02]. The complexity of Gröbner basis computation can be estimated using the
degree of regularity of the system of equations [BFS04]. Consider a system of m homogeneous equations
{fi(x1, . . . , xn) = 0}mi=1 in n Boolean variables. Let di denote the degree of fi for i = 1, 2, . . . ,m. If the
system of equations is overdetermined, i.e., m > n, then the degree of regularity can be estimated by the
smallest degree of the terms with non-positive coefficients appearing in the Hilbert series

(1 + z)n∏m
i=1(1 + zdi)

under Assumption 2.

Assumption 2 ([Frö85]) Almost all polynomial sequences are semi-regular.

For nonhomogeneous equations, the degree of regularity is computed from the following Hilbert series ob-
tained by homogenization [BFSS13]:

(1 + z)n

(1− z)
∏m

i=1(1 + zdi)
. (2)

Given the degree of regularity dreg, the complexity of computing a Gröbner basis of the system of equations
is known to be

O

((
n

dreg

)ω)
.

4



In [KHS+22], the degree of regularity has been wrongly computed using the Hilbert series

1

(1− z)n

m∏
i=1

(1− zdi).

and the complexity formula

O

((
n+ dreg
dreg

)ω)
which gives zeroes over the algebraic closure of F2. As far as we check, this discrepancy leads to no significant
difference in the attack complexity.

3.3 Hybrid Wiedemann XL Algorithm Model

The state-of-the-art model of solving a system of polynomial equations is to use the hybrid Wiedemann XL
algorithm [BFP09, YCBC07]. This model is based on the following three techniques:

1. XL algorithm with termination at the degree of regularity (also known as the operating degree),
2. hybrid approach with the guess-and-determine attack [BFP09],
3. sparse linear system solving algorithm which is called the Wiedemann algorithm [Wie86].

Nowadays, the XL algorithm has been proved to terminate at degree dreg defined by the Hilbert series (2) [YC04,
YCBC07] under Assumption 2. So, the complexity of the hybrid Wiedemann XL algorithm on a system of
Boolean equations is upper bounded by

min
k

3 · 2k ·
(

n− k

dreg(n, k)

)2

·
(

n− k

maxi di

)
(3)

where the degree of regularity dreg(n, k) is the smallest degree of the terms with non-positive coefficients of
the Hilbert series

(1 + z)n−k

(1− z)
∏m

i=1(1 + zdi)
. (4)

3.4 Complexity Model in this Paper

In the previous sections, we introduced three complexity models for algebraic attacks (XL and Gröbner basis
computation). Although the hybrid Wiedemann XL algorithm is the most widely-deployed model, we use
the Gröbner basis attack model with ω = 2 and hybrid approach [BFP09] since the complexity of this model
lower bounds that of the hybrid Wiedemann XL model. Specifically, we use the complexity formula

min
k

2k ·
(

n− k

dreg(n, k)

)2

(5)

where dreg(n, k) is the smallest degree of the terms with non-positive coefficients of (4).

4 Cryptanalysis on AIM

4.1 Fast Exhaustive Search

Exhaustive search is the most basic attack for any keyed function fk(·). For some given pairs (xi, yi) such
that fk(xi) = yi, an attacker checks whether fk̄(xi) = yi or not for all i over all possible keys k̄ in the key

5



space. Fast exhaustive search improves concrete efficiency of exhaustive search when the keyed function can
be represented by a set of low-degree polynomials.

For a degree-d system in n variables, Bouillaguet et al. proposed a fast exhaustive search with time com-
plexity 4d log(n)2n in Boolean operations and memory complexity O(n2d) [BCC+10]. Bouillaguet also pro-
posed a memory-efficient version of the fast exhaustive search with the same time complexity and memory
complexity n2 ·

∑d
i=0

(
n
i

)
in bits [Bou22]. We refer to the original papers for more details.

Liu et al. proposed a low-degree representation of AIM, and applied the fast exhaustive search algorithm
to it [LMOM23]. The low-degree representation is described as follows.

Let z be the output of Lin. Then, pt can be represented in terms of z as follows.

pt = z2
e∗−1 + ct

Denoting the output of Mer[ei] by ti, one has

ti =
(
z2

e∗−1 + ct
)2ei−1

.

Let di be the degree of ti with respect to z, and let dmax = maxi̸=2 di. The exponent e2 is the largest from
{e1, . . . , eℓ} (for the sets of recommended parameters), and t2 can also be expressed as

t2 = A−1
iv,2 (biv + z +Aiv,1(t1) +Aiv,3(t3))

where Aiv,3(t3) does not appear for AIM-I or AIM-III. Now we obtain an equation of degree at most dmax+e∗
from pt · t2 = pt2

e∗ as follows.(
z2

e∗−1 + ct
)
·A−1

iv,2 (biv + z +Aiv,1(t1) +Aiv,3(t3)) =
(
z2

e∗−1 + ct
)2e2

The degree dmax + e∗ is known to be 10/14/15 for AIM-I, III, V, respectively. As the time complexity of
the fast exhaustive search is 4d(log n)2n, the (bitwise) gate-count complexity becomes 2136.2/2200.7/2265.0 for
AIM-I,III,V, respectively, while straightforward exhaustive search requires 2146.4/2211.9/2277.0, respectively.5

4.2 Possible Algebraic Vulnerability on AIM

While communicating with the authors of [LMOM23], Liu pointed out that introducing a new variable
results in an easier system of equations than expected. In this section, we briefly introduce how to make
such a system.

We introduce a new variable w = pt−1, and let ti be the output of Mer[ei] for i ∈ {1, . . . , ℓ}. Then, we
have

ti = pt2
ei
w

for all i = 1, . . . , ℓ. Then we can establish three types of equations

pt · w = 1, (6)

Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)
· (pt+ ct) = Lin

(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗

, (7)

Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)
· (1 + w · ct) = Lin

(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗

· w. (8)

Since the inverse S-box of n-bit input produces 5n linearly independent quadratic equations, we obtain 5n
quadratic equations from (6). For (7) and (8), multiplying pt and w results in n more cubic equations,

5 The complexity of straightforward exhaustive search has been slightly revised in the submission to the NIST PQC
project [KCC+23].

6



respectively. Moreover, we have

Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2

· (pt+ ct) + Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2

· (1 + w · ct) · ct

= Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗+1

+ Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗+1

· w · ct

= Lin
(
pt2

e1
w, . . . , pt2

eℓ
w
)2e∗+1

· w

which produces n more cubic equations. Overall, we have a system of 5n quadratic equations and 5n cubic
equations in 2n Boolean variables regardless of ℓ.

Under Assumption 1 and the condition ω = 2, the time complexity of the XL algorithm is 2124.8/2157.5/2188.9,
respectively, which harms the original security claim in [KHS+22]. However, this assumption is usually re-
garded too strong as it is not plausible to expect that all the expanded equations are linearly independent. This
assumption estimates the complexity much lower than the real computation of the XL algorithm [AFI+04].

If we estimate the complexity in the hybrid Gröbner basis attack model with Assumption 2 which is
regarded as a more realistic assumption, the time complexity of the XL algorithm is 2158.3/2226.5/2290.2.
Those values imply all the instances are secure against the XL algorithm.

The main reason of this vulnerability is insufficient difference between S-boxes in the first round. Since
the exponents are simple and similar to each other, it is possible to set a new variable from a common factor.
In the next section, we introduce our patch to AIM which differentiates the S-boxes much more than the
original AIM.

5 Mitigation on the Cryptanalysis

5.1 AIM2: Overall Patch

Given input/output size n and an (ℓ+1)-tuple of exponents (e1, . . . , eℓ, e∗) ∈ Zℓ+1, AIM2 : {0, 1}n×F2n → F2n

is defined by

AIM2(iv, pt) = Mer[e∗] ◦ Lin[iv] ◦Mer[e1, . . . , eℓ]
−1 ◦ AddConst(pt)⊕ pt

where each function will be described below. See Figure 2 for the pictorial description of AIM2 with ℓ = 3.

Mer[e1]
−1

Mer[e2]
−1

Mer[e3]
−1

Linpt

c1

c2

c3

Mer[e∗] ct

XOF[iv]

Fig. 2: The AIM2-V one-way function with ℓ = 3. The input pt (in red) is the secret key of the signature
scheme, and (iv, ct) (in blue) is the corresponding public key.

7



NON-LINEAR COMPONENTS. AIM2 uses two types of S-boxes: Mersenne S-box Mer[e], and its inverse Mer[e]−1.
These two S-boxes are defined by exponentiation over a large field as follows. For x ∈ F2n ,

Mer[e](x) = x2e−1,

Mer[e]−1(x) = xē where ē = (2e − 1)−1 (mod 2n − 1)

for some e. To follow the spirit of AIM, the exponents e in AIM2 are selected for Mer[e]−1 to have 3n quadratic
equations. We remark that the exponents e are chosen such that gcd(e, n) = 1, and hence the inverse expo-
nent ē is well-defined. As an extension, Mer[e1, . . . , eℓ]

−1 : Fℓ
2n → Fℓ

2n is defined by

Mer[e1, . . . , eℓ]
−1(x1, . . . , xℓ) = Mer[e1]

−1(x1)∥ . . . ∥Mer[eℓ]
−1(xℓ).

LINEAR COMPONENTS. AIM2 includes three types of linear components: constant addition, an affine layer,
and feed-forward. For fixed constants c1, . . . , cℓ, AddConst : F2n → Fℓ

2n is defined by

AddConst(x) = (x+ c1)∥ . . . ∥(x+ cℓ)

where the constants are defined in Table 2.

AIM2-I
c1 0x243f6a8885a308d313198a2e03707344

c2 0xa4093822299f31d0082efa98ec4e6c89

AIM2-III
c1 0x452821e638d01377be5466cf34e90c6cc0ac29b7c97c50dd

c2 0x3f84d5b5b54709179216d5d98979fb1bd1310ba698dfb5ac

AIM2-V
c1 0x2ffd72dbd01adfb7b8e1afed6a267e96ba7c9045f12c7f9924a19947b3916cf7

c2 0x0801f2e2858efc16636920d871574e69a458fea3f4933d7e0d95748f728eb658

c3 0x718bcd5882154aee7b54a41dc25a59b59c30d5392af26013c5d1b023286085f0

Table 2: Constants c1, . . . , cℓ in AddConst are written in hexadecimal. These constants are taken from the
numbers below the decimal point of the π ratio.

The affine layer in AIM2 is exactly the same as AIM. It consists of multiplication by an n × ℓn random
binary matrix Aiv and addition by a random constant biv ∈ Fn

2 . The matrix

Aiv =
[
Aiv,1

∣∣ . . . ∣∣Aiv,ℓ

]
∈ (Fn×n

2 )ℓ

is composed of ℓ random invertible matrices Aiv,i. The matrix Aiv and the vector biv are generated by an
extendable-output function (XOF) with the initial vector iv. Each matrix Aiv,i can be equivalently represented
by a linearized polynomial Liv,i on F2n . For x = (x1, . . . , xℓ) ∈ (F2n)

ℓ,

Lin[iv](x) =
∑

1≤i≤ℓ

Liv,i(xi)⊕ biv.

By abuse of notation, we will write Ax to denote
∑

1≤i≤ℓ Liv,i(xi). Feed-forward operation, which is addition
by the input itself, makes the entire function non-invertible.

RECOMMENDED PARAMETERS. Recommended sets of parameters for λ ∈ {128, 192, 256} are given in Table
1. The irreducible polynomials for extension fields F2128 , F2192 , and F2256 are the same as those used in Rain
[DKR+22].

8



Scheme λ n ℓ e1 e2 e3 e∗

AIM2-I 128 128 2 49 91 - 3
AIM2-III 192 192 2 17 47 - 5
AIM2-V 256 256 3 11 141 7 3

Table 3: Recommended sets of parameters of AIM2.

5.2 Algebraic Attacks on AIM2

VARIOUS SYSTEMS OF AIM2. There are multiple ways of building a system of equations from an evaluation of
AIM2. We can categorize them according to the number of (Boolean) variables and find the optimal choice
of variables to obtain a system of the lowest degree. Since ℓ ∈ {2, 3} is recommended, we consider four types
of systems of equations as follows.

1. Systems in n variables.
2. Systems in 2n variables.
3. Systems in 3n variables.
4. Systems in 4n variables (only for ℓ = 3).

With (ℓ+1)n variables, we can establish a system Squad of quadratic equations. The variables are denoted as
follows.

- x: the input of AIM2, i.e., pt
- ti: the output of Mer[ei]

−1 for i = 1, . . . , ℓ
- z: the output of Lin

From Mer[ei]
−1(x+ ci) = ti, we obtain 3n quadratic equations in x and ti induced by the following relations.

ti(x+ ci) = t2
ei

i ,

ti(x+ ci)
2 = t2

ei

i (x+ ci),

t2i (x+ ci) = t2
ei+1

i .

When x and ti are of higher degrees with respect to other variables, the first two relations result in 2n equa-
tions of degree deg x+deg ti, while the last one results in n equations of degree max(deg x+deg ti, 2 deg ti).
There are also n quadratic equations in ti and tj induced by the following.

(ci + cj)titj = t2
ei

i tj + tit
2ej
j .

We note that z has the same relation with ti with respect to x as z = Mer[e∗]
−1(x+ ct). Using the brute-force

search of quadratic equations on toy parameters, as described later in this section, we find that these are
all possible (linearly independent) quadratic equations on AIM2. Hence, Squad consists of 3(ℓ+ 1)n+

(
ℓ+1
2

)
n

quadratic equations.
With fewer variables, the resulting systems would have higher degrees. For example, Mer[ei]

−1 implicitly
determines 3n quadratic equations in x and ti as above, while ti (resp. x) can be explicitly represented by a
polynomial in x (resp. ti). We can also explicitly represent ti using tj for j ̸= i or z as follows.

ti = Mer[ei]
−1 (Mer[ej ](tj)⊕ ci ⊕ cj)

= Mer[ei]
−1 (Mer[e∗](z)⊕ ct) .

The degree of ti with respect to tj (resp. z) might be greater than the degree of Mer[ei]
−1 ◦ Mer[ej ] (resp.

Mer[ei]
−1 ◦Mer[e∗]) due to the constant addition, while we estimate the degree of the composition (without

constant addition) for simplicity.

9



Scheme Type #Var Variables (#Eq, Deg)
Complexity

k dreg Time (bits)

AIM2-I S1 n t1 (n, 60) - - -
S2 2n t1, t2 (3n, 2) 62 15 207.9

Squad 3n x, t1, t2 (12n, 2) 0 16 185.3

AIM2-III S1 n x (2n, 114) - - -
S2 2n t1, t2 (3n, 2) 100 20 301.9

Squad 3n x, t1, t2 (12n, 2) 0 22 262.4

AIM2-V S1 n x (2n, 172) - - -
S2 2n t2, z (n, 2) + (2n, 38) 253 30 513.5
S3 3n t1, t2, t3 (6n, 2) 2 47 503.7

Squad 4n x, t1, t2, t3 (18n, 2) 9 32 411.4

Table 4: Optimal systems of equations and their security against algebraic attacks. (#Eq,Deg) = (a, b) means
that the system contains a equations of degree b. All the complexities are measured by (5). k is the number
of guessed bits and dreg is the degree of regularity.

Table 4 summarizes a system of equations of the lowest degree for each type, where such systems are
denoted S1, S2, . . . , Squad, respectively, according to the number of variables. The complexities are measured
by (5). For systems of equations of type S1 in n variables, we did not compute precise complexities since the
degree near n/2 requires the XL algorithm to use approximately 2n monomials with time complexity close
to O(22n).

BRUTE-FORCE SEARCH OF QUADRATIC EQUATIONS. Given an overdetermined quadratic system, algebraic
attacks tend to solve the system faster when the system has more linearly independent equations. To lower
bound the complexity of the algebraic attacks, we need to find all linearly independent equations. To find all
such equations, we used brute-force search with the following experiment.

1. Set variables as follows.
- x: the input of AIM2, i.e., pt
- ti: the output of Mer[ei]

−1 for i = 1, . . . , ℓ

- z: the output of Mer[e∗]
−1(x+ ct)

2. Make a generic quadratic equation with indeterminate coefficients aα,β,γ ∈ F2;∑
α,γ∈Fn

2 ,β∈Fℓn
2

hwn(α)+hwn(β)+hwn(γ)≤2

aα,β,γx
αtβi

i zγ = 0 (9)

where β = (β1, . . . , βℓ).
3. Randomly sample x ∈ F2n , and compute the corresponding ti and z. Substitute those values to (9).

4. Repeat the previous step O
((

(ℓ+2)n
2

))
times.

5. Solve the system of linear equations with respect to aα,β,γ . The quadratic equations for the target system
can be computed by substituting such aα,β,γ to (9).

For system Squad, this experiment found 12n quadratic equations for AIM2-I and III, and 18n quadratic
equations for AIM2-V. For system S2 of AIM2-I and III, it found 3n quadratic equations. For system S3 of
AIM2-V, it found 6n quadratic equations. We remark that this experiment does not consider the affine layer
by introducing a redundant variable z. Although this may lead to more equations than the actual number,
we checked that all the equations obtained from the experiment are linearly independent.

10



This experiment can be easily generalized for a general degree d. However, the generalized experiment
will include all the equations of degree d expanded from the quadratic equations. For this reason, we opted
for finding equations of a higher degree by hand rather than running the generalized experiment.

RESISTANCE TO FAST EXHAUSTIVE SEARCH. The fast exhaustive search attacks in [BCC+10, Bou22] are infea-
sible if the target polynomial system is of high degree. Although the time complexity of the fast exhaustive
search is claimed to be 4d log(n)2n, there is a hidden preprocessing cost

T =

d−1∑
k=0

k

(
n

k

)(
k

↓ min(d− k, k)

)
≥ 2d

3
22d/3

(
n

⌊2d/3⌋

)
in binary operations where

(
n
↓k
)
=

∑k
i=0

(
n
i

)
. One can see that T ≫ d2n if d ≥ 0.341n. Furthermore, if

d ≥ n/2, then the memory complexity will also be higher than 2n bits.

INTRODUCING NEW VARIABLES OTHER THAN S-BOX OUTPUTS. As seen in Section 4.2, Liu showed that the
number of quadratic equations can be increased by introducing new variables (w = pt−1) in addition to
the inputs and the outputs of the S-boxes without significantly increasing the degree of the entire system
of equations. We will further generalize Liu’s attack, and analyze the security of AIM2 against this type of
attacks. For simplicity, we write tℓ+1 = z and cℓ+1 = ct. To mount a successful attack by introducing new
variables wi = (pt+ ci)

a (instead of ti) for some i ∈ {1, . . . , ℓ+1}, the following two conditions should hold.

1. The number of quadratic equations between x and the chosen wi’s should be greater than the number of
quadratic equations between x and the corresponding ti’s.

2. The degree deg ti of ti with respect to x and wi’s should not be too large for the chosen i’s.

We first categorize the exponent a yielding quadratic equations. We claim that the two conditions de-
scribed above cannot hold simultaneously, and its theoretical and experimental justification will be given in
Appendix A. From the method of counting the quadratic equations from exponential functions [NGG09], we
can derive the conditions for a to yield quadratic equations as follows, where all arithmetic operations are
done modulo 2n − 1.

– Case A: we have theoretical lower bound of deg(ti).
1. hwn(a) ≤ 2.

2. hwn(a+ 2p) ≤ 2 for some p ∈ {0, . . . , n− 1}.

3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}.

– Case B: we experimentally checked that the number of quadratic equations is always less than 3n assum-
ing that a is not in Case A.
1. 2ra = a+ 2p for some r ∈ {1, . . . , n− 1} and p ∈ {0, . . . , n− 1}.

2. 2r(a+ 2p) = (2k + 1)a for some r ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n− 1}.

– Case C: we experimentally found that these cases do not contribute to algebraic cryptanalysis unless they
simultaneously belong to other case(s)
1. (2m − 1)a = 0 for some m | n.

2. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}.

3. 2ra = a for some r ∈ {1, . . . , n− 1}.

4. 2ra = (2k + 1)a for some r ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n/2}.

5. 2r(2k + 1)a = (2k
′
+ 1)a for some r ∈ {1, . . . , n− 1} and k, k′ ∈ {1, . . . , n/2}

– Case D: we theoretically and experimentally checked that the system either has a large degree deg(ti) or
generates a small number of quadratic equations.
1. 2r(a+ 2p) = (a+ 2q) for some r ∈ {1, . . . , n− 1} and p, q ∈ {0, . . . , n− 1}.

2. (2m − 1)(a+ 2p) = 0 for some m | n and p ∈ {0, . . . , n− 1}.

11



5.3 Other Attacks on AIM2

BRUTE-FORCE KEY SEARCH. Saarinen pointed that the gate-count complexity of brute-force preimage search
attack to AIM is not more than that of AES in PQC forum.6 The point is that the Mersenne S-boxes can be
represented as Mer[e](x) = x2e · (x−1), and x−1 can be efficiently iterated by an LFSR. In AIM2, the same
attack is not applied because of the inverse Mersenne S-boxes.

Even if an attacker iterates an intermediate state to use the same method (e.g., iterates y such that
Mer[e](y) = pt+ c1), the attacker should evaluate at least one whole inverse Mersenne S-box. From this fact,
we believe that this kind of attack cannot be applied to AIM2.

QUANTUM ATTACKS. For larger exponents, it will take slightly more time to compute the (inverse) Mersenne
S-boxes. This leads to a slightly larger complexity of the Grover’s algorithm. The complexities of quan-
tum algebraic attacks will be changed not critically as new quadratic systems are found for AIM2. For
QuantumBooleanSolve [FHK+17], the complexity becomes O(20.462·ℓn) since there are quadratic systems
in ℓn Boolean variables for all the instances of AIM2. The complexity of GroverXL [BY18] is 2(1.1061+o(1))n

for AIM2-I, III and 2(1.3568+o(1))n for AIM2-V. We remark that these attacks are not better than the Grover’s
algorithm.

STATISTICAL ATTACKS. As differential probability and linear probability of an S-box is the same as its inverse,
most of the analysis on statistical attacks will remain unchanged except the weight of a correlation trail.
Since e1 becomes larger than n/2, the weight is lower bounded by n − 2e∗ (with the previous bound being
2(n − e1 − e∗)). We note that it does not imply that linear cryptanalysis is feasible since an adversary is not
given a large enough number of plaintext-ciphertext pairs to mount this analysis.

5.4 Effect on Efficiency

The main feature of AIM is to fully utilize the repeated multipliers in BN++ when proving an AIM instance.
Although the S-boxes in the first round are replaced by inverse Mersenne S-boxes, the structure of AIM2 still
remains unchanged, so the signature size will be unchanged as well.

In AIMer, for every input share JxK of an S-box, the prover and the verifier should compute JxK2
e

. For a
larger exponent e, this computation will take more time. From our experiment, signing and verification of
the new AIMer is expected to be about 10% slower.

References

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita. Comparison Be-
tween XL and Gröbner Basis Algorithms. In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT
2004, pages 338–353, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir,
and Bo-Yin Yang. Fast Exhaustive Search for Polynomial Systems in F2. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010, pages 203–218,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[BFP09] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. Hybrid Approach for Solving Multivariate Systems
over Finite Fields. Journal of Mathematical Cryptology, 3(3):177–197, 2009.

[BFS04] Magali Bardet, Jean-Charles Faugere, and Bruno Salvy. On the complexity of Gröbner basis computa-
tion of semi-regular overdetermined algebraic equations. In Proceedings of the International Conference on
Polynomial System Solving, pages 71–74, 2004.

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the complexity of
solving quadratic Boolean systems. Journal of Complexity, 29(1):53–75, 2013.

[Bou22] Charles Bouillaguet. Boolean Polynomial Evaluation for the Masses. Cryptology ePrint Archive, Paper
2022/1412, 2022. https://eprint.iacr.org/2022/1412.

6 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0

12

https://eprint.iacr.org/2022/1412
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2ilXblNy0


[BY18] Daniel J. Bernstein and Bo-Yin Yang. Asymptotically Faster Quantum Algorithms to Solve Multivariate
Quadratic Equations. In PQCrypto 2018, pages 487–506. Springer, 2018.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In EUROCRYPT 2000, pages 392–407. Springer,
2000.

[DKR+22] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and Greg Zaverucha.
Shorter Signatures Based on Tailor-Made Minimalist Symmetric-Key Crypto. In ACM CCS 2022, pages
843–857. Association of Computing Machinery, November 2022.

[DS13] Jintai Ding and Dieter Schmidt. Solving Degree and Degree of Regularity for Polynomial Systems over a Finite
Fields, pages 34–49. Springer, 2013.

[Fau99] Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and
Applied Algebra, 139(1):61–88, 1999.

[Fau02] Jean Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero
(F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC
’02, page 75–83, New York, NY, USA, 2002. Association for Computing Machinery.

[FHK+17] Jean-Charles Faugère, Kelsey Horan, Delaram Kahrobaei, Marc Kaplan, Elham Kashefi, and Ludovic Perret.
Fast Quantum Algorithm for Solving Multivariate Quadratic Equations. Cryptology ePrint Archive, Paper
2017/1236, 2017. https://eprint.iacr.org/2017/1236.

[Frö85] Ralf Fröberg. An Inequality for Hilbert Series of Graded Algebras. MATHEMATICA SCANDINAVICA, 56,
Dec. 1985.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from Secure Multiparty
Computation. In ACM STOC 2007, pages 21–30, 2007.

[KCC+23] Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon, Byeonghak Lee, Joohee Lee,
Jooyoung Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and Hyojin Yoon. AIMer. Submission to the
NIST’s Standardization of Additional Digital Signature Schemes, 2023. https://csrc.nist.gov/Projects/
pqc-dig-sig/round-1-additional-signatures.

[KHS+22] Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae Moon, Joohee Lee, Sangyub Lee,
Jihoon Kwon, Jihoon Cho, Hyojin Yoon, and Jooyoung Lee. AIM: Symmetric Primitive for Shorter Signa-
tures with Stronger Security (Full Version). Cryptology ePrint Archive, Paper 2022/1387, 2022. To appear
at ACM CCS 2023.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In
CRYPTO ’99, pages 19–30. Springer, 1999.

[KZ22] Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum
Signatures. Cryptology ePrint Archive, Paper 2022/588, 2022. https://eprint.iacr.org/2022/588.

[LMOM23] Fukang Liu, Mohammad Mahzoun, Morten Øygarden, and Willi Meier. Algebraic Attacks on RAIN and AIM
Using Equivalent Representations. Cryptology ePrint Archive, Paper 2023/1133, 2023. https://eprint.
iacr.org/2023/1133.

[NGG09] Yassir Nawaz, Kishan Chand Gupta, and Guang Gong. Algebraic Immunity of S-Boxes Based on Power
Mappings: Analysis and Construction. IEEE Transactions on Information Theory, 55(9):4263–4273, 2009.

[SS21] Jan Ferdinand Sauer and Alan Szepieneic. SoK: Gröbner Basis Algorithms for Arithmetization Oriented
Ciphers. Cryptology ePrint Archive, Paper 2021/870, 2021. https://eprint.iacr.org/2021/870.

[Wie86] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on Information Theory,
32(1):54–62, 1986.

[YC04] Bo-Yin Yang and Jiun-Ming Chen. Theoretical analysis of xl over small fields. In Huaxiong Wang, Josef
Pieprzyk, and Vijay Varadharajan, editors, Information Security and Privacy, pages 277–288, Berlin, Hei-
delberg, 2004. Springer Berlin Heidelberg.

[YCBC07] Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bernstein, and Jiun-Ming Chen. Analysis of QUAD. In
Alex Biryukov, editor, Fast Software Encryption, pages 290–308, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

13

https://eprint.iacr.org/2017/1236
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2022/588
https://eprint.iacr.org/2023/1133
https://eprint.iacr.org/2023/1133
https://eprint.iacr.org/2021/870


A More Details on New Variables Other Than S-Box Outputs

A.1 How to Enumerate the Number of Quadratic Equation

Before the main analysis, we briefly introduce how to enumerate the number of quadratic equations which
was introduced in [NGG09]. Suppose we have an exponentiation function y = xa in F2n . Arithmetic opera-
tions on the exponent is done in Z2n−1. In this section, arithmetic operations involving exponents are done in
modulo 2n−1. In Z2n−1, multiplying by 2 is equivalent to bit-wise circular left shift. As x2i in characteristic-2
fields is linear over F2, xa and x2ia are equivalent up to linear mapping. If (2m − 1)a = 0 for some m|n, we
call a to be m-cyclic.

Discarding equivalent exponents (a ∼ 2ia), quadratic equations between x and y are basically generated
from three types of monomial: y, yx2p , and y2

k+1. If those monomials are represented only in x variable
(e.g., yx2p = xa+2p) and has degree less than or equal to 2 (which is represented by Hamming weight of the
exponent), the system has following quadratic equations.

1. hwn(a) ≤ 2: y = xa

2. hwn(a+ 2p) ≤ 2 for some p ∈ {0, . . . , n− 1}: x2py = xa+2p

3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}: y2k+1 = x(2k+1)a

We note that the domain of k is less than or equal to n/2 in the third case since (2k + 1)a and (2n−k + 1)a
are in the same coset (under the linear equivalence). Sometimes, it generates quadratic equations if at least
two of a, a+ 2p, and (2p + 1)a are in the same coset as follows.

1. 2ra = a for some r ∈ {1, . . . , n− 1}: y2r = y

2. 2ra = a+ 2p for some r ∈ {1, . . . , n− 1} and p ∈ {0, . . . , n− 1}: y2r = yx2p

3. 2ra = (2k + 1)a for some r ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n/2}: y2r = y2k+1

4. 2r(a+ 2p) = a+ 2q for some r ∈ {1, . . . , n− 1} and p, q ∈ {0, . . . , n− 1}: (yx2p)2
r

= yx2q

5. 2r(a+ 2p) = (2k + 1)a for some r ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n− 1}: (yx2p)2
r

= y2k+1

6. 2r(2k + 1)a = (2k
′
+ 1)a for some r ∈ {1, . . . , n− 1} and k, k′ ∈ {1, . . . , n/2}: (y2k+1)2

r

= y2k
′
+1

If one of a, a+2p, and (2p+1)a is m-cyclic, quadratic equations between y itself can be generated as follows.

1. (2m − 1)a = 0 for some m | n: y2m = y

2. (2m − 1)(a+ 2p) = 0 for some m | n and p ∈ {0, . . . , n− 1}: (yx2p)2
m

= yx2p

3. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}: (y2k+1)2
m

= y2k+1

A.2 Detailed Analysis of AIM2

In this section, we provide detailed analysis of setting new variables other than S-box outputs which was
described in Section 4.2. For each S-boxes, we either lower bound of deg(ti) or upper bound the number
of quadratic equation by 3n. We believe that upper bounding the number of quadratic equations by 3n
is sufficient to prevent unknown attack since (inverse) Mersenne S-boxes already generates 3n quadratic
equations. Setting a new variable other than S-box outputs which generates less than or equal 3n quadratic
equations seems to have no benefit compared to setting S-box outputs to be new variables.

Recall that we categorized the exponent a for the new variable wi = (pt+ ci)
a as follows. The following

categorization is different from above, and it is categorized by how we handled the case.

– Case A: we have theoretical lower bound of deg(ti).

1. hwn(a) ≤ 2.

2. hwn(a+ 2p) ≤ 2 for some p ∈ {0, . . . , n− 1}.

3. hwn((2
k + 1)a) ≤ 2 for some k ∈ {1, . . . , n/2}.

14



– Case B: we experimentally checked that the number of quadratic equations is always less than 3n assum-
ing that a is not in Case A.

1. 2ra = a+ 2p for some r ∈ {1, . . . , n− 1} and p ∈ {0, . . . , n− 1}.

2. 2r(a+ 2p) = (2k + 1)a for some r ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n/2} and p ∈ {0, . . . , n− 1}.

– Case C: we experimentally found that these cases do not contribute to algebraic cryptanalysis unless they
simultaneously belong to other case(s)

1. (2m − 1)a = 0 for some m | n.

2. (2m − 1)(2k + 1)a = 0 for some m | n and k ∈ {1, . . . , n/2}.

3. 2ra = a for some r ∈ {1, . . . , n− 1}.

4. 2ra = (2k + 1)a for some r ∈ {1, . . . , n− 1} and k ∈ {1, . . . , n/2}.

5. 2r(2k + 1)a = (2k
′
+ 1)a for some r ∈ {1, . . . , n− 1} and k, k′ ∈ {1, . . . , n/2}

– Case D: we theoretically and experimentally checked that the system either has a large degree deg(ti) or
generates a small number of quadratic equations.

1. 2r(a+ 2p) = (a+ 2q) for some r ∈ {1, . . . , n− 1} and p, q ∈ {0, . . . , n− 1}.

2. (2m − 1)(a+ 2p) = 0 for some m | n and p ∈ {0, . . . , n− 1}.

In the following, we give analysis for each cases. As our analysis given below consider a single S-box case,
we use simpler notation without constant addition as follows.

– x: the input of S-box
– y: the new variable y = xa

– t: the output of S-box, t = xē, ē = (2e − 1)−1 mod (2n − 1) for some e ∈ {e1, . . . , eℓ, e∗}

CASE A. (A-1 and A-2) We want to show that t should be of at least certain degree with respect to x and y
when a is one of the following types:

– a = −1;
– a = 2p + 1, where p ∈ {2, ..., n− 1};
– a = 2p − 1, where p ∈ {2, ..., n− 1};
– a = 2p + 2q − 1, where p, q ∈ {2, ..., n− 1}, p ̸= q;

Define
Dmin,a := min

u

{
hwn(u) + hwn(ē− a · u)

}
and

Dmin := min
a

{Dmin,a}.

Dmin is the lower bound of the degree of t with respect to w and pt by

t = yu · xē−a·u.

At first, suppose a = 2p + 2q − 1 for some p, q ∈ {2, ..., n− 1} where p ̸= q. By the definition, we have

Dmin,2p+2q−1 = min
u

{
hwn(u) + hwn(ē− (2p + 2q − 1) · u)

}
.

By using the fact hwn(x) + hwn(y) ≥ hwn(x+ y), we have

2 · hwn(u) + hwn(ē− (2p + 2q − 1) · u)
= hwn(2

p · u) + hwn(2
q · u) + hwn(ē− (2p + 2q − 1) · u)

≥ hwn(ē+ u),

15



and it implies that

Dmin,2p+2q−1 ≥ min
u

{
max

{
hwn(u), hwn(ē+ u)− hwn(u)

}}
. (10)

Now we want to lower bound hwn(ē+ u) for arbitrary u. For an integer j, define

NumSegn(j) :=
∣∣{i ∈ {0, ..., n− 1} : 2 | (2i · j mod (2n − 1)), 4 ∤ (2i · j mod (2n − 1))

}∣∣
which counts the number of connected “1” segments in the n-bit binary representation of j allowing bitwise
rotation. Then, for an integer j and h ∈ {0, . . . , n− 1},

NumSegn(j + 2h) ≥ NumSegn(j)− 1,

so we get

hwn(ē+ u) ≥ NumSegn(ē+ u) ≥ NumSegn(ē)− hwn(u).

Together with (10), we have

Dmin,2p+2q−1 ≥ min
u

{
max

{
hwn(u),NumSegn(ē)− 2 · hwn(u)

}}
≥ ⌈NumSegn(ē)/3⌉.

Similarly, we have

Dmin,2p−1 ≥ min
u

{
max

{
hwn(u), hwn(ē+ u)

}}
≥ ⌈NumSegn(ē)/2⌉,

Dmin,2p+1 ≥ min
u

{
max

{
hwn(u), hwn(ē)− hwn(u)

}}
≥ ⌈hwn(ē)/2⌉,

Dmin,−1 ≥ min
u

{
hwn(u) + hwn(ē+ u)

}
≥ ⌈NumSegn(ē)⌉,

and overall, we get following lower bound:

Dmin ≥ ⌈NumSegn(ē)/3⌉.

(A-3) Suppose hwn((2
k + 1)a) = 2p + 2q for some p, q ∈ {0, . . . , n− 1}, p ̸= q. Then

Dmin,a = min{hwn(u) + hwn(v) : ē = au+ v}
= min{hwn(u) + hwn(v) : (2

k + 1)ē = (2p + 2q)u+ (2k + 1)v}

= min

{
1

2
(hwn(2

pu) + hwn(2
qu) + hwn(2

kv) + hwn(v)) : (2
k + 1)ē = (2p + 2q)u+ (2k + 1)v

}
≥ min

{
hwn((2

k + 1)ē)

2

}
Therefore,

Dmin ≥ min
k

{hwn((2
k + 1)ē)}/2

CASE B. If a is in Case B, there exists either

– r ∈ {1, . . . , n− 1} such that gcd(2r − 1, 2n − 1) = 1 and hwn((2
r − 1)a) = 1 or

– r, s ∈ {1, . . . , n− 1} such that gcd(2r + 2s − 1, 2n − 1) = 1 and hwn((2
r + 2s − 1)a) = 1.

16



Then, we can count the number of equations for each r or (r, s), while check a is in Case A. As a result,
at least for n ∈ {128, 192, 256}, the corresponding a all belong to Case A or produce 3n or fewer quadratic
equations.

CASE C. The quadratic equation from a in Case B consists of only y-variables. For example, if a satisfies
2r(2k + 1)a = (2k

′
+ 1)a, then we get

y2
k+r+2r = y2

k′
+1.

This kind of equations cannot contribute to solve the whole system since it only reduces the number of
candidates of y, not x. Therefore, we ignored this case.

CASE D. Although the exponent a is in Case D but not in Case A and B, we experimentally checked that the
system from y = xa has large deg(t) or 3n or fewer quadratic equations. Recall that the system with y = xa

is equivalent (up to linear mapping) to the system with y = x2ia for some i.
(D-1) Let (2r − 1)a = 2p − 1 for some r ∈ {1, . . . , n − 1} and p ∈ {0, . . . , n − 1}. Since r = 1 or r = n − 1
or p ∈ {0, 1} implies a is covered in Case A or B, let 1 < r < n − 1 and p > 1. For a to exist, it should be
gcd(r, n) | p.

– Suppose a also satisfies (2m − 1)a = 0 for some m > 0. Then, (2m − 1)(2r − 1)a = (2p − 1)(2m − 1) =
0, which is contradiction. Therefore, y = xa does not imply quadratic equations from the condition
(2m − 1)a = 0.

– Suppose a also satisfies (2m−1)(2k+1)a = 0 for some m | n and k ∈ {1, . . . , n−1} and (2m−1)(2k+1) ̸=
0. Then, (2m− 1)(2k +1)(2r − 1)a = (2k +1)(2p− 1)(2m− 1) = 0, which implies k = p = n/2. Therefore,
we have (2m − 1)(2n/2 + 1)a = 0 and it means that we get at most n more equations from

y2
n/2+1 = y2

n/2+m+2m . (11)

– Suppose a also satisfies (2k − 2s + 1)a = 0 for some k, s such that (2k − 2s + 1) ̸= 0. Then, (2k −
2s + 1)(2r − 1)a = (2k − 2s + 1)(2p − 1) = 0, which implies p = n/2 and (k, s) = (n/2 + 1, n/2) or
(k, s) = (n/2− 1, n− 1). Since (2n/2 + 1)a = 0 and (2n/2−1 + 2n − 2n−1)a = 0 are covered in Case A, a
cannot satisfy such condition without satisfying Case A.

– Suppose a also satisfies (2q +2k − 2s− 1)a = 0 for some q, k, s such that (2q +2k − 2s− 1) ̸= 0 and q < k.
Then, (2q + 2k − 2s − 1)(2r − 1)a = (2q + 2k − 2s − 1)(2p − 1) = 0, which implies one of the following.
• q = 1, k = n/2 − 1, s = n − 1, p = n/2. Since 2 + 2n/2−1 − 2n−1 − 1 = 2n−1 + 2n/2−1, this case is

covered in Case A.
• q = 2, k = n/2, s = 1, p = n/2. Since 4 + 2n/2 − 2− 1 = 2n/2 + 1, this case is covered in Case A.
• k = q + n/2, s = n/2, p = n/2. In other word, (2q + 2q+n/2 − 2n/2 − 1)a = (2q − 1)(2n/2 + 1)a = 0.

Since gcd(2q − 1, 2n − 1) = 2gcd(q,n) − 1, one can get at most n equations same as in (11).
– Suppose a also satisfies 2m(2s−1)a = 2q−1 for some m, s, q. Then, 2m(2s−1)(2r−1)a = (2r−1)(2q−1) =

2m(2s − 1)(2p − 1), which implies one of the following.
• m = 0, p = r, q = s. It means that (2r − 1)a = 2r − 1 or equivalently, (2m − 1)a = (2m − 1) for
m = gcd(n, r). Then, we get n−m

2m · n equations from

yimx = yxim, for i = 1, . . . ,
⌊ n

2m

⌋
.

• m = 0, p = s, q = r. It means that (2r − 1)a = 2s − 1 and (2s − 1)a = 2r − 1, and it only holds when
r − s which become exactly same condition in above.

• r = n/2± 1, p = ±2. It means that

a = (2n/2±1 − 1)−1(2±2 − 1) = 2n/2±1 + 1,

and such a is covered by Case A.

17



• r = n/2± 1, p = n/2. It means that

(2n/2 + 1)a = (2n/2 + 1)(2n/2±1)−1(2n/2 − 1) = 0,

and such a is covered by Case A.
• s = n/2± 1, q = ±2. It means that

a = 2−m(2n/2±1 − 1)−1(2±2 − 1) = 2−m(2n/2±1 + 1),

and such a is covered by Case A.
• s = n/2± 1, q = n/2. It means that

2m(2n/2 + 1)a = (2n/2 + 1)(2n/2±1)−1(2n/2 − 1) = 0,

and such a is covered by Case A.
• r = n/2 ± 1, p = ∓2, or s = n/2 ± 1, q = ∓2. We counted the number of all quadratic equations for

each a of this form and experimentally checked that y = xa implies 1.5n equations.

In summary, if (2r − 1)a = 2p − 1 for some 1 < r < n− 1 and p > 1, one of the following events happen:

– if a is also in Case A, we have theoretic lower bound of deg(t);
– if p = r and gcd(r, n) = m < n/2, y = xa produces n−m

2m · n equations which implies that less than or
equal to 3n quadratic equations are generated when m ≥ n/7;

– if p = r = n/2, one have 1.5n equations;
– if p = n/2 and r does not satisfy above conditions, one have at most 2n equations;
– otherwise, one have n equations.

Therefore, to have more than 3n equations, a should satisfy (2m − 1)a = 2m − 1 where m | n and m < n/7.
Let ē = au+ v. Then,

(2m − 1)ē = (2m − 1)(u+ v) ⇒ u+ v = ē+
2n − 1

2m − 1
· b

for some 0 ≤ b ≤ 2m − 1. Therefore

hwn(u) + hwn(v) ≥ hwn(u+ v) ≥ min
b

{
hwn

(
ē+

2n − 1

2m − 1
· b
)}

(D-2) Let (2m − 1)(a+ 1) = 0 for some m | n and p ∈ {0, . . . , n− 1}, and let ē = au+ v for some u, v. In this
case, a+ 1 is m-cyclic, which implies the binary representation of a+ 1 is the concatenation of n/m number
of a length-m string.

We divide this case into three subcases: 2 ≤ m ≤ n/4, m = n/3, and m = n/2. For the latter two
cases, we utilize the brute-force result of toy examples since the number of candidates of a is too many. Let
a = 2n−1

2m−1 · b − 1 for some 0 ≤ b < 2m − 1. In toy examples (n = 16, 24, 32, 48), we found that the number
of quadratic equations from y = xa is no more than n unless hwn(b) = 1 by brute-force searching b. If
hwn(b) = 1, then

hwn(a+ 1) = hwn

(
2n − 1

2m − 1
· b
)

=
n

m
· hwn(b) =

n

m
.

We will use this fact to bound the degree of t when m = n/2 or n/3.

– Suppose that 2 ≤ m ≤ n/4. We will show that the number of quadratic equations are less than 3n.
• hwn(a) ≥ hwn(a+ 1)− 1 ≥ n/m− 1 ≥ 3. So, it does not generate quadratic equations.
• For some 0 ≤ p < n, a + 2p = 2n−1

2m−1 · b + (2p − 1). Since a + 1 is m-cyclic for m ≤ n/4, a + 1 is at
least 4 concatenation of the same substring. If hwn(a+ 1+ 2p) = hwn(a+ 1) or hwn(a+ 1) + 1, then
hwn(a + 1 + 2p) ≥ 4 since each substring of a + 1 has at least one 1. Otherwise, suppose adding 2p

delete r ≥ 2 successive 1’s of a + 1. Then, each substring of a + 1 has at least r 1’s. Since m = 1
implies a = −1, we can assume m ̸= 1, which implies that each substring has at least one 0. So,
hwn(a+ 2p) ≥ hwn(a+ 1 + 2p)− 1 ≥ 2(n/m− 2)− 1 ≥ 3.

18



• For some 1 ≤ k ≤ n/2,

(2k + 1)a =
2n − 1

2m − 1
· b(2k + 1)− (2k + 1) =

2n − 1

2m − 1
· b′ − (2k + 1)

where b′ = b(2k + 1) (mod 2r − 1). If b′ = 0, then hwn((2
k + 1)a) = hwn(−(2k + 1)) > 2. Otherwise,

since 2n−1
2m−1 · b′ is m-cyclic, hwn((2

k + 1)a) ≥ n/m− 2. It implies no quadratic equation for m < n/4.
For m = n/4, it is required to delete two of four 1’s in 2n−1

2m−1 · b′ by subtracting 2k + 1 for making
hwn((2

k + 1) = 2. It is possible only if (2k + 1)b = 1 (mod 2m − 1) and m|k, which implies k = n/4
or n/2. Those cases produce n and n/2 quadratic equations respectively.

• Except the case of a+1, the form a, a+2p, and (2k +1)a never become cyclic. So, this case produces
n−m quadratic equations.

• Suppose 2ra = a for some 1 ≤ r < n. It implies that

2r · 2
n − 1

2m − 1
· b− 2r =

2n − 1

2m − 1
· b− 1

⇐⇒ 2n − 1

2m − 1
· b(2r − 1) = 2r − 1

where 2r − 1 cannot be cyclic for 1 < r < n.
• Suppose 2ra = a+ 2p for some 1 ≤ r < n and 0 ≤ p < n. It means that

2n − 1

2m − 1
· b(2r − 1) = 2r + 2p − 1.

Since 2r + 2p − 1 is nonzero and cannot be m-cyclic for m ≤ n/4, this condition does not generate
any quadratic equation.

• Suppose 2ra = (2k + 1)a for some 1 ≤ r < n and 1 ≤ k ≤ n/2. It means that

2n − 1

2m − 1
· b(2k − 2r − 1) = 2k − 2r − 1.

Since 2k − 2r − 1 is nonzero and cannot be m-cyclic for m ≤ n/4, this condition does not generate
any quadratic equation.

• Suppose 2r(a+ 2p) = a+ 2q for some 1 ≤ r < n and 0 ≤ p ̸= q < n. It means that

2n − 1

2m − 1
· b(1− 2r) = 2r(2p − 1)− (2q − 1).

Without loss of generality, we can assume that p > q. Up to circular shift, we can rewrite 2r(2p−1)−
(2q − 1) by 2r1(2p − 1) − 2r2(2q − 1) where 0 < r2 + q ≤ r1 + p < n − 1 or r1 + p = n − 1. We will
check the form of 2r1(2p − 1)− 2r2(2q − 1) by dividing into four cases.
1. If 0 < r2 + q = r1 + p < n− 1, then it is acyclic.
2. If 0 < r2 + q < r1 + p < n− 1, then it is nonzero and could be n/2-cyclic if r1 ≤ r2 or n/3-cyclic

if r1 > r2 but not lower.
3. If r1 + p = n − 1 and r2 + q ≤ n − 1, then it is nonzero and is acyclic if r2 + q = n − 1 or could

be n/2-cyclic if r1 ≤ r2 or n/3-cyclic if r1 > r2 but not lower.
4. Suppose r2+q ≥ n. Let 2r2(2q−1) = 2n−q1(2q1 −1)+(2q2 −1) where q1+q2 = q, 1 ≤ q1 ≤ q < p,

and n− q1 > q2 ≥ 1. Then, it is nonzero and could be n/3-cyclic but not lower.
Since 2n−1

2m−1 · b(1 − 2r) is m-cyclic where m ≤ n/4, this condition does not produce any quadratic
equation.

• Suppose 2r(a+ 2p) = (2k + 1)a for some 1 ≤ r < n, 1 ≤ k ≤ n/2 and 0 ≤ p < n. It means that

2n − 1

2m − 1
· b(2k − 2r + 1) = (2p − 1)2r + 2k + 1.

Since (2p − 1)2r + 2k + 1 is nonzero and cannot be m-cyclic for m ≤ n/4, this condition does not
generate any quadratic equation.

19



• Suppose 2r(2k + 1)a = (2k
′
+ 1)a for some 1 ≤ r < n and 1 ≤ k, k′ ≤ n/2. It means that

2n − 1

2m − 1
· b(2r(2k + 1)− (2k

′
+ 1)) = 2r(2k + 1)− (2k

′
+ 1).

Let 2r(2k + 1) = 2i1 + 2i2 with i1 > i2. We will check the form of (2i1 + 2i2) − (2k
′
+ 1) by dividing

into four cases.
1. If i1 > i2 > k, then (2i1 + 2i2)− (2k

′
+ 1) is nonzero and could be n/3-cyclic but not lower.

2. If i1 ≥ k ≥ i2, then it could be n/2-cyclic but not lower. It cannot be zero since 0 ≤ k ̸= k′ ≤ n/2.
3. If k > i1 > i2 and i2 > 0, then it is nonzero and could be n/3-cyclic but not lower.
4. If k > i1 > i2 and i2 = 0, then it is nonzero and acyclic.

Since 2n−1
2m−1 · b(2

r(2k +1)− (2k
′
+1)) is m-cyclic where m ≤ n/4, this condition does not produce any

quadratic equation.
– Suppose that m = n/3. For n = 192, only b = 1 and b = 2m−1 induce more than 3n quadratic equations,

provided that hwn(b) = 1.
• For b = 1, a = 22m + 2m. Let e = ua+ v. Then

2 · hwn(u) + hwn(v) = hwn(2
2mu) + hwn(2

mu) + hwn(e− ua) ≥ hwn(e),

so that
hwn(u) + hwn(v) ≥ max {hwn(e)− hwn(u), hwn(u)} ≥ ⌈hwn(e)/2⌉.

• For b = 2m−1, a−1 = 22m + 2m. Let e = ua+ v, then u = a−1e− a−1v. Similarly, we have

hwn(u)+2 ·hwn(v) = hwn(a
−1e−a−1v)+hwn(2

2mv)+hwn(2
mv) ≥ hwn(a

−1e) = hwn((2
2m+2m) e)

so that

hwn(u) + hwn(v) ≥ max
{
hwn((2

2m + 2m) e)− hwn(v), hwn(v)
}
≥ ⌈hwn((2

2m + 2m) e)/2⌉.

– Suppose that m = n/2. Let ē = ua+ v. We will lower bound hwn(u) + hwn(v). Then,

hwn(v) = hwn(ē− ua) = hwn(ē+ u− u(a+ 1))

≥ hwn(ē+ u)− hwn(u(a+ 1))

≥ NumSeg(ē)− hwn(u)− hwn(a+ 1)hwn(u).

Therefore,

hwn(u) + hwn(v) ≥ max {NumSeg(ē)− hwn(a+ 1)hwn(u), hwn(u)}
≥ ⌈NumSeg(ē)/(hwn(a+ 1) + 1)⌉ = ⌈NumSeg(ē)/3⌉.

LOWER BOUNDS OF THE DEGREES OF THE INDUCED SYSTEM. Since the largest degree reaching while running
a Gröbner basis computation algorithm or the XL algorithm (also known as solving degree [DS13]) should
be larger than or equal to the degree of the system, we can lower bound the security of AIM2 against Liu’s
attack. Table 5 summarizes the lower bound of time complexity (from (5)) of Case A and D and the bound of
Dmin for each exponents. We only considered the case of replacing some variables in Squad, since otherwise
we would get a system with a lot higher degree.

20



Scheme (e1, Dmin) (e2, Dmin) (e3, Dmin) (e∗, Dmin)
Complexity

k sd Time (bits)

AIM2-I (49, 16) (91, 15) - (3, 15) 0 ≥ 15 176.2
AIM2-III (17, 17) (47, 17) - (5, 26) 0 ≥ 17 214.4
AIM2-V (11, 31) (141, 23) (7, 25) (3, 29) 0 ≥ 23 310.4

Table 5: Lower bounds of the degrees of the system for Case A and D. (ei, Dmin) = (e, d) means that there is
no such f with deg(f) < d where ti = Mer[ei]

−1(pt) = f(pt, wi) and wi = (pt+ ci)
a for some integer a, while

there exists degree 2 polynomial g(pt, w) = 0. All the complexities are measured by (3). k is the number of
guessed bits and sd is the solving degree, which is larger than at least one of Dmin.

21


	Mitigation on the AIM Cryptanalysis

