2,245 research outputs found

    A survey of grapevine fanleaf nepovirus isolates for the presence of satellite RNA

    Get PDF
    Grapevine fanleaf virus (GFLV) isolates from different geographical origins were surveyed for natural occurrence of satellite RNA. The results of molecular hybridization assays indicated that 5 isolates out of 34 tested, support the multiplication of a satellite RNA, both in Chenopodium quinoa and grapevine. The satellite molecules appear to have a high degree of sequence homology with, and the same size of, the satellite RNA supported by GFLV-F13 strain, isolated and characterized in France

    NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Get PDF
    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and international partners, as well as information about outreach efforts and future opportunities to participate in SSERVI

    Occurrence of grapevine virus A (GVA) and other closteroviruses in Tunisian grapevines affected by leafroll disease

    Get PDF
    Vorkommen von Grapevine-Virus A (GVA) und anderen Closteroviren in blattrollkranken tunesischen RebenReben, die aus den Hauptweinbaugebieten Tunesiens stammten, wurden auf die Anwesenheit von Closteroviren hin überprüft. Während in keiner der symptomfreien Reben Viruspartikel entdeckt wurden, enthielten alle Reben mit Blattrollsymptomen - außer zweien - Closteroviruspartikel, die durch IEM (immune electron microscopy) in konzentrierten Blattextrakten oder unmittelbar in Rohsaft durch ISEM (immunosorbent electron microscopy) identifiziert wurden. Alle vier derzeit bekannten Closteroviren (GClV-1, GClV-2, GClV-3 und GVA) waren, meistens im Gemisch, in Reben mit Blattrollsymptomen vorhanden. GClV-3 und GVA wurden in 77 bzw. 50 % der geprüften Reben entdeckt. Ein tunesisches Isolat von GVA, das durch Planococcus citri auf krautige Testpflanzen übertragen wurde, unterschied sich in biologischer Hinsicht, aber nicht in den charakteristischen physikalisch-chemischen und serologischen Eigenschaften von zwei italienischen Isolaten desselben Virus

    Substantia Nigra Volumetry with 3-T MRI in De Novo and Advanced Parkinson Disease

    Get PDF
    Background: Magnetization transfer–prepared T1-weighted MRI can depict a hyperintense subregion of the substantia nigra involved in the degeneration process of Parkinson disease. / Purpose: To evaluate quantitative measurement of substantia nigra volume by using MRI to support clinical diagnosis and staging of Parkinson disease. / Materials and Methods: In this prospective study, a high-spatial-resolution magnetization transfer–prepared T1-weighted volumetric sequence was performed with a 3-T MRI machine between January 2014 and October 2015 for participants with de novo Parkinson disease, advanced Parkinson disease, and healthy control participants. A reproducible semiautomatic quantification analysis method that entailed mesencephalic intensity as an internal reference was used for hyperintense substantia nigra volumetry normalized to intracranial volume. A general linear model with age and sex as covariates was used to compare the three groups. / Results: Eighty participants were evaluated: 20 healthy control participants (mean age ± standard deviation, 56 years ± 11; 11 women), 29 participants with de novo Parkinson disease (64 years ± 10; 19 men), and 31 participants with advanced Parkinson disease (60 years ± 9; 16 women). Volumetric measurement of hyperintense substantia nigra from magnetization transfer–prepared T1-weighted MRI helped differentiate healthy control participants from participants with advanced Parkinson disease (mean difference for ipsilateral side, 64 mm3 ± 14, P < .001; mean difference for contralateral side, 109 mm3 ± 14, P < .001) and helped distinguish healthy control participants from participants with de novo Parkinson disease (mean difference for ipsilateral side, 45 mm3 ± 15, P < .01; mean difference for contralateral side, 66 mm3 ± 15, P < .001) and participants with de novo Parkinson disease from those with advanced Parkinson disease (mean difference for ipsilateral side, 20 mm3 ± 13, P = .40; mean difference for contralateral side, 43 mm3 ± 13, P = .004). / Conclusion: Magnetization transfer–prepared T1-weighted MRI volumetry of the substantia nigra helped differentiate the stages of Parkinson disease

    Extracellular Vesicles Derived From Plasma of Patients With Neurodegenerative Disease Have Common Transcriptomic Profiling

    Get PDF
    Objectives: There is a lack of effective biomarkers for neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia. Extracellular vesicle (EV) RNA cargo can have an interesting potential as a non-invasive biomarker for NDs. However, the knowledge about the abundance of EV-mRNAs and their contribution to neurodegeneration is not clear. Methods: Large and small EVs (LEVs and SEVs) were isolated from plasma of patients and healthy volunteers (control, CTR) by differential centrifugation and filtration, and RNA was extracted. Whole transcriptome was carried out using next generation sequencing (NGS). Results: Coding RNA (i.e., mRNA) but not long non-coding RNAs (lncRNAs) in SEVs and LEVs of patients with ALS could be distinguished from healthy CTRs and from other NDs using the principal component analysis (PCA). Some mRNAs were found in commonly deregulated between SEVs of patients with ALS and frontotemporal dementia (FTD), and they were classified in mRNA processing and splicing pathways. In LEVs, instead, one mRNA and one antisense RNA (i.e., MAP3K7CL and AP003068.3) were found to be in common among ALS, FTD, and PD. No deregulated mRNAs were found in EVs of patients with AD. Conclusion: Different RNA regulation occurs in LEVs and SEVs of NDs. mRNAs and lncRNAs are present in plasma-derived EVs of NDs, and there are common and specific transcripts that characterize LEVs and SEVs from the NDs considered in this study

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore