11 research outputs found

    Light intensity affects RNA silencing of a transgene in Nicotiana benthamiana plants

    Get PDF
    Abstract Background Expression of exogenous sequences in plants is often suppressed through one of the earliest described RNA silencing pathways, sense post-transcriptional gene silencing (S-PTGS). This type of suppression has made significant contributions to our knowledge of the biology of RNA silencing pathways and has important consequences in plant transgenesis applications. Although significant progress has been made in recent years, factors affecting the stability of transgene expression are still not well understood. It has been shown before that the efficiency of RNA silencing in plants is influenced by various environmental factors. Results Here we report that a major environmental factor, light intensity, significantly affects the induction and systemic spread of S-PTGS. Moreover, we show that photoadaptation to high or low light intensity conditions differentially affects mRNA levels of major components of the RNA silencing machinery. Conclusions Light intensity is one of the previously unknown factors that affect transgene stability at the post-transcriptional level. Our findings demonstrate an example of how environmental conditions could affect RNA silencing.</p

    Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1

    No full text
    Viroids are noncoding circular single-stranded RNAs that are propagated systemically in plants. VirP1 is a protein from tomato, which is an excellent host for potato spindle tuber viroid (PSTVd), and it has been isolated by virtue of its specific in vitro binding to PSTVd RNA. We report on the specific in vivo interaction of VirP1 with full-length viroid RNA as well as with subfragments in the three-hybrid system. The terminal right domain (TR) of PSTVd was identified as a strong interacting partner for VirP1. A weaker partner is provided by a right-hand subfragment of hop stunt viroid (HSVd), a viroid that infects tomato poorly. We present a sequence and structural motif of the VirP1-interacting subfragments. The motif is disturbed in the replicative but nonspreading R+ mutant of the TR. According to our in vivo and in vitro binding assays, the interaction of this mutant with VirP1 is compromised. We propose that the AGG/CCUUC motif bolsters recognition of the TR by VirP1 to achieve access of the viroid to pathways that propagate endogenous RNA systemic signals in plants. Systemic trafficking has been suggested for miRNA precursors, of which the TR, as a stable bulged hairpin 71 nt long, is quite reminiscent
    corecore