16,839 research outputs found
Entanglement fidelity of the standard quantum teleportation channel
We consider the standard quantum teleportation protocol where a general
bipartite state is used as entanglement resource. We use the entanglement
fidelity to describe how well the standard quantum teleportation channel
transmits quantum entanglement and give a simple expression for the
entanglement fidelity when it is averaged on all input states.Comment: 3 page
Entanglement criterion via general symmetric informationally complete measurements
We study the quantum separability problem by using general symmetric
informationally complete measurements and present a separability criterion for
arbitrary dimensional bipartite systems. We show by detailed examples that our
criterion is more powerful than the existing ones in entanglement detection.Comment: 8 pages, 5 figure
A Bayesian Approach to Estimate the Size and Structure of the Broad-line Region in Active Galactic Nuclei Using Reverberation Mapping Data
This is the first paper in a series devoted to systematic study of the size
and structure of the broad-line region (BLR) in active galactic nuclei (AGNs)
using reverberation mapping (RM) data. We employ a recently developed Bayesian
approach that statistically describes the variabibility as a damped random walk
process and delineates the BLR structure using a flexible disk geometry that
can account for a variety of shapes, including disks, rings, shells, and
spheres. We allow for the possibility that the line emission may respond
non-linearly to the continuum, and we detrend the light curves when there is
clear evidence for secular variation. We use a Markov Chain Monte Carlo
implementation based on Bayesian statistics to recover the parameters and
uncertainties for the BLR model. The corresponding transfer function is
obtained self-consistently. We tentatively constrain the virial factor used to
estimate black hole masses; more accurate determinations will have to await
velocity-resolved RM data. Application of our method to RM data with Hbeta
monitoring for about 40 objects shows that the assumed BLR geometry can
reproduce quite well the observed emission-line fluxes from the continuum light
curves. We find that the Hbeta BLR sizes obtained from our method are on
average ~20% larger than those derived from the traditional cross-correlation
method. Nevertheless, we still find a tight BLR size-luminosity relation with a
slope of alpha=0.55\pm0.03 and an intrinsic scatter of ~0.18 dex. In
particular, we demonstrate that our approach yields appropriate BLR sizes for
some objects (such as Mrk 142 and PG 2130+099) where traditional methods
previously encountered difficulties.Comment: 17 pages, 10 figures, 2 tables; minor reversion to match the
published versio
- …
