895 research outputs found

    Remembering Prices: Numeric Cognition, Language, and Price Recall

    Get PDF
    Remembering Prices: Numeric Cognition, Language, and Price RecallABSTRACTThis paper examines how consumers process multi-prices (e.g., prices that consist of several components like 329foracameraand329 for a camera and 16 for delivery) from a linguistic and numeric cognition perspective. We theorize that when consumers read multi-prices, they encode the numbers phonologically. This can lead to overtaxing working memory capacity as consumers calculate the total price of the package and to less accurate price recall for multiprices that have longer number names (e.g., number names with more syllables). We find evidence for this process in three studies, both across different languages and within languages

    Implicit distancing in Auction: When name letter branding backfires

    Get PDF
    Consumers subconsciously prefer brand names that resemble their own names - an effect called name letter branding. We extend it and propose that a reversal of name letter branding, wherein consumers will subconsciously avoid self-resembling seller names, is possible when the buyer anticipates self-concept damage from an association with the seller. We find evidence of such behavior, which we call implicit distancing, in three studies. We show name letter branding and implicit distancing in actual transactions and determine underlying causal mechanisms in two experiments. Our findings suggest that self-concept motives determine the prevalence of name letter branding or implicit distancing.This benefited from a PSC-CUNY grant awarded to the second author

    Spectral resolution evaluation by MCNP simulation for airborne alpha detection system with a collimator

    Get PDF
    In this study, an airborne alpha detection system, which consists of a passivated implanted planar silicon (PIPS) detector and an air filter, was developed. A collimator applied to the alpha detection system showed an enhancement in resolution and a degradation in detection efficiency. The resolution and detection efficiency were compared and analyzed to evaluate the performance of the collimator. Thus, the resolution was found to be more important than the efficiency as a determining factor of the detection system performance, from the viewpoint of radionuclide identification. The performance was evaluated on three properties of the collimator: hole shape, hole length, and the ratio between the hole and frame pitches. From the hole shape performance evaluation, a hexagonal collimator showed the highest resolution. Further, the collimator with a hole pitch of 14 mm was found to have the highest resolution while that with a frame pitch of 4-6 mm (i.e., 1.2-1.4 times longer than the hole pitch) showed the highest resolution. ? 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Investigation of Geant4 Simulation of Electron Backscattering

    Full text link
    A test of Geant4 simulation of electron backscattering recently published in this journal prompted further investigation into the causes of the observed behaviour. An interplay between features of geometry and physics algorithms implemented in Geant4 is found to significantly affect the accuracy of backscattering simulation in some physics configurations

    Validation Test of Geant4 Simulation of Electron Backscattering

    Full text link
    Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is extensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Geant4 versions from 9.1 to 10.1. Significant evolutions are observed over the range of Geant4 versions, not always in the direction of better compatibility with experiment. Goodness-of-fit tests complemented by categorical analysis tests identify a configuration based on Geant4 Urban multiple scattering model in Geant4 version 9.1 and a configuration based on single Coulomb scattering in Geant4 10.0 as the physics options best reproducing experimental data above a few tens of keV. At lower energies only single scattering demonstrates some capability to reproduce data down to a few keV. Recommended preassembled physics configurations appear incapable of describing electron backscattering compatible with experiment. With the support of statistical methods, a correlation is established between the validation of Geant4-based simulation of backscattering and of energy deposition

    Quantitative Test of the Evolution of Geant4 Electron Backscattering Simulation

    Full text link
    Evolutions of Geant4 code have affected the simulation of electron backscattering with respect to previously published results. Their effects are quantified by analyzing the compatibility of the simulated electron backscattering fraction with a large collection of experimental data for a wide set of physics configuration options available in Geant4. Special emphasis is placed on two electron scattering implementations first released in Geant4 version 10.2: the Goudsmit-Saunderson multiple scattering model and a single Coulomb scattering model based on Mott cross section calculation. The new Goudsmit-Saunderson multiple scattering model appears to perform equally or less accurately than the model implemented in previous Geant4 versions, depending on the electron energy. The new Coulomb scattering model was flawed from a physics point of view, but computationally fast in Geant4 version 10.2; the physics correction released in Geant4 version 10.2p01 severely degrades its computational performance. Evolutions in the Geant4 geometry domain have addressed physics problems observed in electron backscattering simulation in previous publications.Comment: To be published in IEEE Trans. Nucl. Sc

    Optimum Design of a Pultruded FRP Bridge Deck.

    Get PDF
    In this paper, an optimum design of GFRP bridge deck having a pultruded cellular cross-section is presented. The optimization process utilizes a modified genetic algorithm with the index technique. Based on the optimum design, viable cross-sectional dimension, volumes of fibers and matrix, fiber orientation, and stacking sequence for GFRP decks suitable for the pultrusion process are proposed
    • 

    corecore