8 research outputs found

    Validation of accuracy and stability of numerical simulation for 2-D heat transfer system by an entropy production approach

    No full text
    The entropy production in 2-D heat transfer system has been analyzed systematically by using the finite volume method, to develop new criteria for the numerical simulation in case of multidimensional systems, with the aid of the CFD codes. The steady-state heat conduction problem has been investigated for entropy production, and the entropy production profile has been calculated based upon the current approach. From results for 2-D heat conduction, it can be found that the stability of entropy production profile exhibits a better agreement with the exact solution accordingly, and the current approach is effective for measuring the accuracy and stability of numerical simulations for heat transfer problems

    Plasmonic 2D Materials: Overview, Advancements, Future Prospects and Functional Applications

    No full text
    Plasmonics is a technologically advanced term in condensed matter physics that describes surface plasmon resonance where surface plasmons are collective electron oscillations confined at the dielectric-metal interface and these collective excitations exhibit profound plasmonic properties in conjunction with light interaction. Surface plasmons are based on nanomaterials and their structures; therefore, semiconductors, metals, and two-dimensional (2D) nanomaterials exhibit distinct plasmonic effects due to unique confinements. Recent technical breakthroughs in characterization and material manufacturing of two-dimensional ultra-thin materials have piqued the interest of the materials industry because of their extraordinary plasmonic enhanced characteristics. The 2D plasmonic materials have great potential for photonic and optoelectronic device applications owing to their ultra-thin and strong light-emission characteristics, such as; photovoltaics, transparent electrodes, and photodetectors. Also, the light-driven reactions of 2D plasmonic materials are environmentally benign and climate-friendly for future energy generations which makes them extremely appealing for energy applications. This chapter is aimed to cover recent advances in plasmonic 2D materials (graphene, graphene oxides, hexagonal boron nitride, pnictogens, MXenes, metal oxides, and non-metals) as well as their potential for applied applications, and is divided into several sections to elaborate recent theoretical and experimental developments along with potential in photonics and energy storage industries

    Photodetection Tuning with High Absorptivity Using Stacked 2D Heterostructure Films

    No full text
    Graphene-based photodetection (PD) devices have been broadly studied for their broadband absorption, high carrier mobility, and mechanical flexibility. Owing to graphene’s low optical absorption, the research on graphene-based PD devices so far has relied on hybrid heterostructure devices to enhance photo-absorption. Designing a new generation of PD devices supported by silicon (Si) film is considered as an innovative technique for PD devices; Si film-based devices are typically utilized in optical communication and image sensing owing to the remarkable features of Si, e.g., high absorption, high carrier mobility, outstanding CMOS integration. Here, we integrate (i) Si film via a splitting/printing transfer with (ii) graphite film grown by a pyrolysis method. Consequently, p-type Si film/graphite film/n-type Si-stacked PD devices exhibited a broadband detection of 0.4–4 μm (in computation) and obtained good experimental results such as the responsivity of 100 mA/W, specific detectivity of 3.44 × 106 Jones, noise-equivalent power of 14.53 × 10−10 W/(Hz)1/2, external quantum efficiency of 0.2, and rise/fall time of 38 μs/1 μs under 532 nm laser illumination. Additionally, our computational results also confirmed an enhanced light absorption of the above stacked 2D heterostructure film-based PD device compatible with the experimental results

    Growth of High Mobility InN Film on Ga‐Polar GaN Substrate by Molecular Beam Epitaxy for Optoelectronic Device Applications

    No full text
    Abstract The fabrication of high‐speed electronic and communication devices has rapidly grown the demand for high mobility semiconductors. However, their high cost and complex fabrication process make them less attractive for the consumer market and industrial applications. Indium nitride (InN) can be a potential candidate to fulfill industrial requirements due to simple and low‐cost fabrication process as well as unique electronic properties such as narrow direct bandgap and high electron mobility. In this work, 3 µm thick InN epilayer is grown on (0001) gallium nitride (GaN)/Sapphire template under In‐rich conditions with different In/N flux ratios by molecular beam epitaxy. The sharp InN/GaN interface monolayers with the In‐polar growth are observed, which assure the precise control of the growth parameters. The directly probed electron mobility of 3610 cm2 V‐1 s‐1 is measured with an unintentionally doped electron density of 2.24 × 1017 cm‐3. The screw dislocation and edge dislocation densities are calculated to be 2.56 × 108 and 0.92 × 1010 cm‐2, respectively. The step‐flow growth with the average surface roughness of 0.23 nm for 1 × 1 µm2 is confirmed. The high quality and high mobility InN film make it a potential candidate for high‐speed electronic/optoelectronic devices

    The Ripple Effect of Graphite Nanofilm on Stretchable Polydimethylsiloxane for Optical Sensing

    No full text
    Graphene-based optical sensing devices have been widely studied for their broad band absorption, high carrier mobility, and mechanical flexibility. Due to graphene’s weak light absorption, studies on graphene-based optical sensing thus far have focused on hybrid heterostructure devices to enhance photo-absorption. Such hybrid devices need a complicated integration process and lead to deteriorating carrier mobility as a result of heterogeneous interfaces. Rippled or wrinkled graphene has been studied in electronic and optoelectronic devices. However, concrete demonstrations of the impact of the morphology of nanofilms (e.g., graphite and graphene) associated with light absorption in optical sensing devices have not been fully examined. This study explored the optical sensing potential of a graphite nanofilm surface with ripples induced by a stretchable polydimethylsiloxane (PDMS) supporting layer under different stretch:release ratios and then transferred onto silicon, both under experimental conditions and via simulation. The optical sensing potential of the rippled graphite nanofilm was significantly enhanced (260 mA/W at the stretch–release state of 30%), as compared to the pristine graphite/PDMS (20 mA/W at the stretch–release state of 0%) under laser illumination at a wavelength of 532 nm. In addition, the results of our simulated computation also confirmed the improved light absorption of rippled graphite nanofilm surface-based optical sensing devices, which was comparable with the results found in the experiment
    corecore