14,574 research outputs found

    Void-mediated formation of Sn quantum dots in a Si matrix

    Get PDF
    Atomic scale analysis of Sn quantum dots (QDs) formed during the molecular beam-epitaxy (MBE) growth of Sn_xSi_(1−x) (0.05 ⩽ x ⩽ 0.1) multilayers in a Si matrix revealed a void-mediated formation mechanism. Voids below the Si surface are induced by the lattice mismatch strain between Sn_xSi_(1−x) layers and Si, taking on their equilibrium tetrakaidecahedron shape. The diffusion of Sn atoms into these voids leads to an initial rapid coarsening of quantum dots during annealing. Since this formation process is not restricted to Sn, a method to grow QDs may be developed by controlling the formation of voids and the diffusion of materials into these voids during MBE growth

    The Omega deformed B-model for rigid N=2 theories

    Full text link
    We give an interpretation of the Omega deformed B-model that leads naturally to the generalized holomorphic anomaly equations. Direct integration of the latter calculates topological amplitudes of four dimensional rigid N=2 theories explicitly in general Omega-backgrounds in terms of modular forms. These amplitudes encode the refined BPS spectrum as well as new gravitational couplings in the effective action of N=2 supersymmetric theories. The rigid N=2 field theories we focus on are the conformal rank one N=2 Seiberg-Witten theories. The failure of holomorphicity is milder in the conformal cases, but fixing the holomorphic ambiguity is only possible upon mass deformation. Our formalism applies irrespectively of whether a Lagrangian formulation exists. In the class of rigid N=2 theories arising from compactifications on local Calabi-Yau manifolds, we consider the theory of local P2. We calculate motivic Donaldson-Thomas invariants for this geometry and make predictions for generalized Gromov-Witten invariants at the orbifold point.Comment: 73 pages, no figures, references added and typos correcte

    Disks around massive young stellar objects: are they common?

    Full text link
    We present K-band polarimetric images of several massive young stellar objects at resolutions \sim 0.1-0.5 arcsec. The polarization vectors around these sources are nearly centro-symmetric, indicating they are dominating the illumination of each field. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS1 show well defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work add additional samples around MYSOs equivalent to early B-type stars.Comment: 9 pages, including 2 figures, 1 table, to appear on ApJ

    Effect of sintering temperature under high pressure in the uperconductivity for MgB2

    Full text link
    We report the effect of the sintering temperature on the superconductivity of MgB2 pellets prepared under a high pressure of 3 GPa. The superconducting properties of the non-heated MgB2 in this high pressure were poor. However, as the sintering temperature increased, the superconducting properties were vastly enhanced, which was shown by the narrow transition width for the resistivity and the low-field magnetizations. This shows that heat treatment under high pressure is essential to improve superconducting properties. These changes were found to be closely related to changes in the surface morphology observed using scanning electron microscopy.Comment: 3 Pages including 3 figure

    The Characteristics of Tip Leakage in Scroll Compressors for Air Conditioners

    Get PDF

    A mechanism for the Double-Spin Asymmetry in Electromagnetic ρ\rho Production at HERMES

    Get PDF
    We calculate the contribution of meson and pomeron exchanges to the double-spin asymmetry in ρ\rho-meson electromagnetic production at HERMES energies. We show that the observed double-spin asymmetries, which are large, can be explained by the interference between the natural parity f2f_2-secondary Reggeon and the unnatural parity anomalous f1f_1 exchanges.Comment: 7 pages, 3 figures, Late

    Infrared spectroscopy of small-molecule endofullerenes

    Full text link
    Hydrogen is one of the few molecules which has been incarcerated in the molecular cage of C60_{60} and forms endohedral supramolecular complex H2_2@C60_{60}. In this confinement hydrogen acquires new properties. Its translational motion becomes quantized and is correlated with its rotations. We applied infrared spectroscopy to study the dynamics of hydrogen isotopologs H2_2, D2_2 and HD incarcerated in C60_{60}. The translational and rotational modes appear as side bands to the hydrogen vibrational mode in the mid infrared part of the absorption spectrum. Because of the large mass difference of hydrogen and C60_{60} and the high symmetry of C60_{60} the problem is identical to a problem of a vibrating rotor moving in a three-dimensional spherical potential. The translational motion within the C60_{60} cavity breaks the inversion symmetry and induces optical activity of H2_2. We derive potential, rotational, vibrational and dipole moment parameters from the analysis of the infrared absorption spectra. Our results were used to derive the parameters of a pairwise additive five-dimensional potential energy surface for H2_2@C60_{60}. The same parameters were used to predict H2_2 energies inside C70_{70}[Xu et al., J. Chem. Phys., {\bf 130}, 224306 (2009)]. We compare the predicted energies and the low temperature infrared absorption spectra of H2_2@C70_{70}.Comment: Updated author lis
    corecore