592 research outputs found

    Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    Get PDF
    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly

    Mesenchymal stem cells-derived exosomal miR-653-5p suppresses laryngeal papilloma progression by inhibiting BZW2

    Get PDF
    Objectives: Although miR-653-5p has been validated to participate in the progression of multiple types of cancer, the functional role of exosomal miR-653-5p derived from Mesenchymal Stem Cells (MSCs) in Laryngeal Papilloma (LP) has still remained elusive. Hence, this study aimed to investigate the role of MSCs-derived exosomal miR-653-5p in LP. Methods: LP tissues (n = 15) and adjacent normal tissues (n = 10) were collected to examine the expression level of miR-653-5p. The expression level of miR-653-5p in LP cells and normal cells was also detected. Then, miR-653-5p was overexpressed or silenced to explore its effects on the proliferation, migration, invasion, and apoptosis of LP cells. Thereafter, the effects of exosomal miR-653-5p derived from MSCs on LP cell progression and the potential regulatory mechanism of miR-653-5p were assessed. Results: It was revealed that the expression level of miR-653-5p was downregulated in LP tissues and cells. In addition, miR-653-5p suppressed the proliferation, migration, invasion, and apoptosis of LP cells. Exosomes derived from MSCs played a suppressive role in LP development and mediated the transmission of miR-653-5p to LP cells. Further exploration identified Basic leucine Zipper and W2 domains 2 (BZW2) as the target of miR-653-5p. More importantly, the rescue experiments revealed that MSCs-secreted exosomal miR-653-5p efficiently inhibited the aggressive phenotypes of LP cells, which could be significantly reversed by BZW2 overexpression in LP cells. Conclusion: MSCs-derived exosomal miR-653-5p exerted inhibitory effects on LP progression through targeting BZW2, which provided a novel idea for the therapy of LP. Clinical Trial registration number: chictr-ior-17011021

    Estimating systemic fibrosis by combining galectin-3 and ST2 provides powerful risk stratification value for patients after acute decompensated heart failure

    Get PDF
    Background: Two fibrosis biomarkers, galectin-3 (Gal-3) and suppression of tumorigenicity 2 (ST2), provide prognostic value additive to natriuretic peptides and traditional risk factors in patients with heart failure (HF). However, it is to be investigated whether their combined measurement before discharge provides incremental risk stratification for patients after acute HF. Methods: A total of 344 patients with acute HF were analyzed with Gal-3, and ST2 measured. Patients were prospectively followed for 3.7 ± 1.3 years for deaths, and composite events (death/HF-related re-hospitalizations). Results: The levels of Gal-3 and ST2 were only slightly related (r = 0.20, p < 0.001). The medians of Gal-3 and ST2 were 18 ng/mL and 32.4 ng/mL, respectively. These biomarkers compensated each other and characterized patients with different risk factors. According to the cutoff at median values, patients were separated into four subgroups based on high and low Gal-3 (HG and LG, respectively) and ST2 levels (HS and LS, respectively). Kaplan-Meier survival curves showed that HGHS powerfully identified patients at risk of mortality (Log rank = 21.27, p < 0.001). In multivariable analysis, combined log(Gal-3) and log(ST2) was an in­dependent predictor. For composite events, Kaplan-Meier survival curves showed a lower event- -free survival rate in the HGHS subgroup compared to others (Log rank = 34.62, p < 0.001; HGHS vs. HGLS, Log rank = 4.00, p = 0.045). In multivariable analysis, combined log(Gal-3) and log(ST2) was also an independent predictor. Conclusions: Combination of biomarkers involving heterogeneous fibrosis pathways may identify patients with high systemic fibrosis, providing powerful risk stratification value

    [Malonato(2−)-κ2 O,O′]bis­(1,10-phenanthroline-κ2 N,N′)zinc(II) penta­hydrate

    Get PDF
    In the title complex, [Zn(C3H2O4)(C12H8N2)2]·5H2O, the ZnII cation displays a distorted octa­hedral geometry, being coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from different carboxyl­ate groups of the chelating malonate dianion. In the crystal, the complexes are linked into a three-dimensional supra­molecular network by both O—H⋯O hydrogen-bonding inter­actions between water mol­ecules and the uncoordinated carboxyl­ate O atoms of neighboring mol­ecules, and aromatic π–π stacking inter­actions between neighboring phenanthroline rings with centroid–centroid distances of 3.4654 (17) and 3.697 (2) Å

    KIF5A upregulation in hepatocellular carcinoma: A novel prognostic biomarker associated with unique tumor microenvironment status

    Get PDF
    Liver hepatocellular carcinoma (LIHC) is one of the most common liver malignancies with high mortality and morbidity. Thus, it is crucial to identify potential biomarker that is capable of accurately predicting the prognosis and therapeutic response of LIHC. Kinesin family member 5A (KIF5A) is a microtubule-based motor protein involved in the transport of macromolecules such as organelle proteins in cells. Recent studies have illustrated that the high expression of KIF5A was related to poor prognosis of solid tumors, including bladder cancer, prostate cancer, and breast cancer. However, little is currently known concerning the clinical significance of KIF5A expression in LIHC. Herein, by adopting multi-omics bioinformatics analysis, we comprehensively uncovered the potential function and the predictive value of KIF5A in stratifying clinical features among patients with LIHC, for which a high KIF5A level predicted an unfavorable clinical outcome. Results from KIF5A-related network and enrichment analyses illustrated that KIF5A might involve in microtubule-based process, antigen processing and presentation of exogenous peptide antigen via MHC class II. Furthermore, immune infiltration and immune function analyses revealed upregulated KIF5A could predict a unique tumor microenvironment with more CD8+T cells and a higher level of anti-tumor immune response. Evidence provided by immunohistochemistry staining (IHC) further validated our findings at the protein level. Taken together, KIF5A might serve as a novel prognostic biomarker for predicting immunotherapy response and could be a potential target for anti-cancer strategies for LIHC

    Liposome-based polymer complex as a novel adjuvant: enhancement of specific antibody production and isotype switch

    Get PDF
    The aim of vaccination is to induce appropriate immunity against pathogens. Antibody-mediated immunity is critical for protection against many virus diseases, although it is becoming more evident that coordinated, multifunctional immune responses lead to the most effective defense. Specific antibody (Ab) isotypes are more efficient at protecting against pathogen invasion in different locations in the body. For example, compared to other Ab isotypes, immunoglobulin (Ig) A provides more protection at mucosal areas. In this study, we developed a cationic lipopolymer (liposome-polyethylene glycol-polyethyleneimine complex [LPPC]) adjuvant that strongly adsorbs antigens or immunomodulators onto its surface to enhance or switch immune responses. The results demonstrate that LPPC enhances uptake ability, surface marker expression, proinflammatory cytokine release, and antigen presentation in mouse phagocytes. In contrast to Freund’s adjuvant, LPPC preferentially activates Th1- immunity against antigens in vivo. With lipopolysaccharides or CpG oligodeoxynucleotides, LPPC dramatically enhances the IgA or IgG2A proportion of total Ig, even in hosts that have developed Th2 immunities and high IgG1 serum titers. Taken together, the results demonstrate that the LPPC adjuvant not only increases the immunogenicity of antigens but also modulates host immunity to produce an appropriate Ab isotype by combining with immunomodulators

    A multifunctional poly-N-vinylcarbazole interlayer in perovskite solar cells for high stability and efficiency: a test with new triazatruxene-based hole transporting materials

    Get PDF
    The hydrophobic and conductive polymer poly-N-vinylcarbazole (PVK) has been successfully utilized as a multifunctional interlayer between perovskite and the hole transporting material (HTM) for highly stable and efficient perovskite solar cells (PSCs) for the first time. The very thin PVK interlayer can not only protect the perovskite structure from moisture and degradation, but also modulate the interface to reduce charge recombination and promote hole transportation simultaneously. Benefited by coupling this PVK-protection method with the molecular design of an economical and synthetically facile triazatruxene-based HTM (SP-12) featuring good stability, planarity and hole mobility, a reliable power conversion efficiency of 18.8% has been achieved, which is superior to that using the well-studied spiro-OMeTAD (16.9%), demonstrating a promising fabrication approach to efficient and long-term stable PSCs

    Replica theory for learning curves for Gaussian processes on random graphs

    Full text link
    Statistical physics approaches can be used to derive accurate predictions for the performance of inference methods learning from potentially noisy data, as quantified by the learning curve defined as the average error versus number of training examples. We analyse a challenging problem in the area of non-parametric inference where an effectively infinite number of parameters has to be learned, specifically Gaussian process regression. When the inputs are vertices on a random graph and the outputs noisy function values, we show that replica techniques can be used to obtain exact performance predictions in the limit of large graphs. The covariance of the Gaussian process prior is defined by a random walk kernel, the discrete analogue of squared exponential kernels on continuous spaces. Conventionally this kernel is normalised only globally, so that the prior variance can differ between vertices; as a more principled alternative we consider local normalisation, where the prior variance is uniform
    corecore