354 research outputs found

    Pretreatment carcinoembryonic antigen level is a risk factor for para-aortic lymph node recurrence in addition to squamous cell carcinoma antigen following definitive concurrent chemoradiotherapy for squamous cell carcinoma of the uterine cervix

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To identify pretreatment carcinoembryonic antigen (CEA) levels as a risk factor for para-aortic lymph node (PALN) recurrence following concurrent chemoradiotherapy (CCRT) for cervical cancer.</p> <p>Methods</p> <p>From March 1995 to January 2008, 188 patients with squamous cell carcinoma (SCC) of the uterine cervix were analyzed retrospectively. No patient received PALN irradiation as the initial treatment. CEA and squamous cell carcinoma antigen (SCC-Ag) were measured before and after radiotherapy. PALN recurrence was detected by computer tomography (CT) scans. We analyzed the actuarial rates of PALN recurrence by using Kaplan-Meier curves. Multivariate analyses were carried out with Cox regression models. We stratified the risk groups based on the hazard ratios (HR).</p> <p>Results</p> <p>Both pretreatment CEA levels ≥ 10 ng/mL and SCC-Ag levels < 10 ng/mL (<it>p </it>< 0.001, HR = 8.838), SCC-Ag levels ≥ 40 ng/mL (<it>p </it>< 0.001, HR = 12.551), and SCC-Ag levels of 10-40 ng/mL (<it>p </it>< 0.001, HR = 4.2464) were significant factors for PALN recurrence. The corresponding 5-year PALN recurrence rates were 51.5%, 84.8%, and 27.5%, respectively. The 5-year PALN recurrence rate for patients with both low (< 10 ng/mL) SCC and CEA was only 9.6%. CEA levels ≥ 10 ng/mL or SCC-Ag levels ≥ 10 ng/mL at PALN recurrence were associated with overall survival after an isolated PALN recurrence. Pretreatment CEA levels ≥ 10 ng/mL were also associated with survival after an isolated PALN recurrence.</p> <p>Conclusions</p> <p>Pretreatment CEA ≥ 10 ng/mL is an additional risk factor of PALN relapse following definitive CCRT for SCC of the uterine cervix in patients with pretreatment SCC-Ag levels < 10 ng/mL. More comprehensive examinations before CCRT and intensive follow-up schedules are suggested for early detection and salvage in patients with SCC-Ag or CEA levels ≥ 10 ng/mL.</p

    Novel and Recurrent Mutations of WISP3 in Two Chinese Families with Progressive Pseudorheumatoid Dysplasia

    Get PDF
    BACKGROUND: The WNT1-inducible signaling pathway protein 3 (WISP3), which belongs to the CCN (cysteine-rich protein 61, connective tissue growth factor, nephroblastoma overexpressed) family, is a secreted cysteine-rich matricellular protein that is involved in chondrogenesis, osteogenesis and tumorigenesis. WISP3 gene mutations are associated with progressive pseudorheumatoid dysplasia (PPD, OMIM208230), an autosomal recessive genetic disease that is characterized by the swelling of multiple joints and disproportionate dwarfism. METHODOLOGY/PRINCIPAL FINDINGS: Four PPD patients from two unrelated Chinese families were recruited for this study. The clinical diagnosis was confirmed by medical history, physical examinations, laboratory results and radiological abnormalities. WISP3 mutations were detected by direct DNA sequence analysis. In total, four different mutations were identified, which consisted of two missense mutations, one deletion and one insertion that spanned exons 3, 5 and 6 of the WISP3 gene. One of the missense mutations (c.342T>G/p.C114W) and a seven-base pair frameshift deletion (c.716_722del/p.E239fs*16) were novel. The other missense mutation (c.1000T>C/p. S334P) and the insertion mutation (c.866_867insA/p.Q289fs*31) had previously been identified in Chinese patients. All four cases had a compound heterozygous status, and their parents were heterozygous carriers of these mutations. CONCLUSIONS/SIGNIFICANCE: The results of our study expand the spectrum of WISP3 mutations that are associated with PPD and further elucidate the function of WISP3

    Outer Membrane Vesicles Derived from Escherichia coli Induce Systemic Inflammatory Response Syndrome

    Get PDF
    Sepsis, characterized by a systemic inflammatory state that is usually related to Gram-negative bacterial infection, is a leading cause of death worldwide. Although the annual incidence of sepsis is still rising, the exact cause of Gram-negative bacteria-associated sepsis is not clear. Outer membrane vesicles (OMVs), constitutively secreted from Gram-negative bacteria, are nano-sized spherical bilayered proteolipids. Using a mouse model, we showed that intraperitoneal injection of OMVs derived from intestinal Escherichia coli induced lethality. Furthermore, OMVs induced host responses which resemble a clinically relevant condition like sepsis that was characterized by piloerection, eye exudates, hypothermia, tachypnea, leukopenia, disseminated intravascular coagulation, dysfunction of the lungs, hypotension, and systemic induction of tumor necrosis factor-α and interleukin-6. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of sepsis, suggesting OMVs as a new therapeutic target to prevent and/or treat severe sepsis caused by Gram-negative bacterial infection

    Mesenchymal Stem Cells Transfer Mitochondria to the Cells with Virtually No Mitochondrial Function but Not with Pathogenic mtDNA Mutations

    Get PDF
    It has been reported that human mesenchymal stem cells (MSCs) can transfer mitochondria to the cells with severely compromised mitochondrial function. We tested whether the reported intercellular mitochondrial transfer could be replicated in different types of cells or under different experimental conditions, and tried to elucidate possible mechanism. Using biochemical selection methods, we found exponentially growing cells in restrictive media (uridine− and bromodeoxyuridine [BrdU]+) during the coculture of MSCs (uridine-independent and BrdU-sensitive) and 143B-derived cells with severe mitochondrial dysfunction induced by either long-term ethidium bromide treatment or short-term rhodamine 6G (R6G) treatment (uridine-dependent but BrdU-resistant). The exponentially growing cells had nuclear DNA fingerprint patterns identical to 143B, and a sequence of mitochondrial DNA (mtDNA) identical to the MSCs. Since R6G causes rapid and irreversible damage to mitochondria without the removal of mtDNA, the mitochondrial function appears to be restored through a direct transfer of mitochondria rather than mtDNA alone. Conditioned media, which were prepared by treating mtDNA-less 143B ρ0 cells under uridine-free condition, induced increased chemotaxis in MSC, which was also supported by transcriptome analysis. Cytochalasin B, an inhibitor of chemotaxis and cytoskeletal assembly, blocked mitochondrial transfer phenomenon in the above condition. However, we could not find any evidence of mitochondrial transfer to the cells harboring human pathogenic mtDNA mutations (A3243G mutation or 4,977 bp deletion). Thus, the mitochondrial transfer is limited to the condition of a near total absence of mitochondrial function. Elucidation of the mechanism of mitochondrial transfer will help us create a potential cell therapy-based mitochondrial restoration or mitochondrial gene therapy for human diseases caused by mitochondrial dysfunction

    Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3

    Get PDF
    Aging is linked to loss of the self-renewal capacity of adult stem cells. Here, we observed that human multipotent stem cells (MSCs) underwent cellular senescence in vitro. Decreased expression of histone deacetylases (HDACs), followed by downregulation of polycomb group genes (PcGs), such as BMI1, EZH2 and SUZ12, and by upregulation of jumonji domain containing 3 (JMJD3), was observed in senescent MSCs. Similarly, HDAC inhibitors induced cellular senescence through downregulation of PcGs and upregulation of JMJD3. Regulation of PcGs was associated with HDAC inhibitor-induced hypophosphorylation of RB, which causes RB to bind to and decrease the transcriptional activity of E2F. JMJD3 expression regulation was dependant on histone acetylation status at its promoter regions. A histone acetyltransferase (HAT) inhibitor prevented replicative senescence of MSCs. These results suggest that HDAC activity might be important for MSC self-renewal by balancing PcGs and JMJD3 expression, which govern cellular senescence by p16INK4A regulation

    Regulatory Effects of IFN-β on the Development of Experimental Autoimmune Uveoretinitis in B10RIII Mice

    Get PDF
    BACKGROUND: Experimental autoimmune uveoretinitis (EAU) serves as a model for human intraocular inflammation. IFN-β has been used in the treatment of certain autoimmune diseases. Earlier studies showed that it ameliorated EAU; however, the mechanisms involved in this inhibition are still largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: B10RIII mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 161-180 in Complete Freund's adjuvant. Splenocytes from different time points after immunization were used to evaluate the expression of IFN-β. An increased expression of IFN-β was observed during EAU and its highest expression was observed on day 16, 3 days after the peak of intraocular inflammation. Splenocytes and draining lymph node cells from mice immunized with IRBP(161-180) on day 13 and control mice were activated with anti-CD3/anti-CD28 antibodies or IRBP(161-180) to evaluate the production of IFN-γ and IL-17. The results showed that IFN-γ and IL-17 were significantly higher in immunized mice as compared to the control mice when exposed to anti-CD3/anti-CD28 antibodies. However, the production of IFN-γ and IL-17 was detected only in immunized mice, but not in the control mice when stimulated with IRBP(161-180). Multiple subcutaneous injections of IFN-β significantly inhibited EAU activity in association with a down-regulated expression of IFN-γ, IL-17 and an enhanced IL-10 production. In an in vitro system using cells from mice, IFN-β suppressed IFN-γ production by CD4(+)CD62L(-) T cells, IL-17 production by CD4(+)CD62L(+/-) T cells and proliferation of CD4(+)CD62L(+/-) T cells. IFN-β inhibited the secretion of IL-6, but promoted the secretion of IL-10 by monocytes. IFN-β-treated monocytes inhibited IL-17 secretion by CD4(+)CD62L(+/-) T cells, but did not influence IFN-γ expression and T cell proliferation. CONCLUSIONS/SIGNIFICANCE: IFN-β may exert its inhibitory effect on EAU by inhibiting Th1, Th17 cells and modulating relevant cytokines. IFN-β may provide a potential treatment for diseases mediated by Th1 and Th17 cells

    Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population

    Get PDF
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is one of the most common cancers in southern China. In addition to environmental factors such as Epstein-Barr virus infection and diet, genetic susceptibility has been reported to play a key role in the development of this disease. The x-ray repair cross-complementing group 1 (XRCC1) gene is important in DNA base excision repair. We hypothesized that two common single nucleotide polymorphisms of XRCC1 (codons 194 Arg→Trp and 399 Arg→Gln) are related to the risk of NPC and interact with tobacco smoking. METHODS: We sought to determine whether these genetic variants of the XRCC1 gene were associated with the risk of NPC among the Cantonese population in a hospital-based case control study using polymerase chain reaction-restriction fragment length polymorphism analysis. We conducted this study in 462 NPC patients and 511 healthy controls. RESULTS: After adjustment for sex and age, we found a reduced risk of developing NPC in individuals with the Trp194Trp genotype (OR = 0.48; 95% CI, 0.27–0.86) and the Arg194Trp genotype (OR = 0.79; 95% CI, 0.60–1.05) compared with those with the Arg194Arg genotype. Compared with those with the Arg399Arg genotype, the risk for NPC was not significantly different in individuals with the Arg399Gln genotype (OR = 0.82; 95% CI, 0.62–1.08) and the Gln399Gln genotype (OR = 1.20; 95% CI, 0.69–2.06). Further analyses stratified by gender and smoking status revealed a significantly reduced risk of NPC among males (OR = 0.32; 95% CI, 0.14–0.70) and smokers (OR = 0.34; 95% CI, 0.14–0.82) carrying the XRCC1 194Trp/Trp genotype compared with those carrying the Arg/Arg genotype. No association was observed between Arg399Gln variant genotypes and the risk of NPC combined with smoking and gender. CONCLUSION: Our findings suggest that the XRCC1 Trp194Trp variant genotype is associated with a reduced risk of developing NPC in Cantonese population, particularly in males and smokers. Larger studies are needed to confirm our findings and unravel the underlying mechanisms

    Involvement of Cyclin K Posttranscriptional Regulation in the Formation of Artemia Diapause Cysts

    Get PDF
    Background: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. Principal Finding: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb) in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2) in the C-terminal domain (CTD) of the largest subunit (Rpb1) of RNA polymerase II (RNAP II). Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK) survival signaling pathway. Conclusions/Significance: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role wa

    Novel CCL21-Vault Nanocapsule Intratumoral Delivery Inhibits Lung Cancer Growth

    Get PDF
    Based on our preclinical findings, we are assessing the efficacy of intratumoral injection of dendritic cells (DC) transduced with an adenoviral vector expressing the secondary lymphoid chemokine (CCL21) gene (Ad-CCL21-DC) in a phase I trial in advanced non-small cell lung cancer (NSCLC). While this approach shows immune enhancement, the preparation of autologous DC for CCL21 genetic modification is cumbersome, expensive and time consuming. We are evaluating a non-DC based approach which utilizes vault nanoparticles for intratumoral CCL21 delivery to mediate antitumor activity in lung cancer.Here we describe that vault nanocapsule platform for CCL21 delivery elicits antitumor activity with inhibition of lung cancer growth. Vault nanocapsule packaged CCL21 (CCL21-vaults) demonstrated functional activity in chemotactic and antigen presenting activity assays. Recombinant vaults impacted chemotactic migration of T cells and this effect was predominantly CCL21 dependent as CCL21 neutralization abrogated the CCL21 mediated enhancement in chemotaxis. Intratumoral administration of CCL21-vaults in mice bearing lung cancer enhanced leukocytic infiltrates (CXCR3(+)T, CCR7(+)T, IFNγ(+)T lymphocytes, DEC205(+) DC), inhibited lung cancer tumor growth and reduced the frequencies of immune suppressive cells [myeloid derived suppressor cells (MDSC), T regulatory cells (Treg), IL-10 T cells]. CCL21-vaults induced systemic antitumor responses by augmenting splenic T cell lytic activity against parental tumor cells.This study demonstrates that the vault nanocapsule can efficiently deliver CCL21 to sustain antitumor activity and inhibit lung cancer growth. The vault nanocapsule can serve as an "off the shelf" approach to deliver antitumor cytokines to treat a broad range of malignancies
    corecore