16,210 research outputs found

    Superconductivity-induced Phonon Renormalization on NaFe1x_{1-x}Cox_{x}As

    Full text link
    We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8 K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of the six phonon modes expected from group theory are observed. In contrast with results obtained on iso-structural and iso-electronic LiFeAs, anomalous broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both samples. In addition, in the Co-doped sample, a superconductivity-induced renormalization of the frequency and linewidth of the B1g(Fe) vibration is observed. This renormalization can not be understood within a single band and simple multi-band approaches. A theoretical model that includes the effects of SDW correlations along with sign-changing s-wave pairing state and interband scattering has been developed to explain the observed behavior of the B1g(Fe) mode.Comment: 10 pages; 6 figure

    Raman Scattering Study of the Lattice Dynamics of Superconducting LiFeAs

    Full text link
    We report an investigation of the lattice dynamical properties of LiFeAs using inelastic light scattering. Five out of the six expected phonon modes are observed. The temperature evolution of their frequencies and linewidths is in good agreement with an anharmonic-decay model. We find no evidence for substantial electron-phonon coupling, and no superconductivity-induced phonon anomalies.Comment: 5 pages, 3 figures, 1 tabl

    Electron-boson spectral density of LiFeAs obtained from optical data

    Full text link
    We analyze existing optical data in the superconducting state of LiFeAs at T=T = 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density I2χ(ω)I^2\chi(\omega) from the optical scattering rate. Care is taken to properly account for elastic impurity scattering which can importantly affect the optics in an ss-wave superconductor, but does not eliminate the boson structure. We find a robust peak in I2χ(ω)I^2\chi(\omega) centered about ΩR\Omega_R \cong 8.0 meV or 5.3 kBTck_B T_c (with Tc=T_c = 17.6 K). Its position in energy agrees well with a similar structure seen in scanning tunneling spectroscopy (STS). There is also a peak in the inelastic neutron scattering (INS) data at this same energy. This peak is found to persist in the normal state at T=T = 23 K. There is evidence that the superconducting gap is anisotropic as was also found in low temperature angular resolved photoemission (ARPES) data.Comment: 17 pages, 6 figure

    The Gluon Spin in the Chiral Bag Model

    Get PDF
    We study the gluon polarization contribution at the quark model renormalization scale to the proton spin, Γ\Gamma, in the chiral bag model. It is evaluated by taking the expectation value of the forward matrix element of a local gluon operator in the axial gauge A+=0A^+=0. It is shown that the confining boundary condition for the color electric field plays an important role. When a solution satisfying the boundary condition for the color electric field, which is not the conventionally used but which we favor, is used, the Γ\Gamma has a positive value for {\it all} bag radii and its magnitude is comparable to the quark spin polarization. This results in a significant reduction in the relative fraction of the proton spin carried by the quark spin, which is consistent with the small flavor singlet axial current measured in the EMC experiments.Comment: Corrections to figure

    Electronic structure of YbB6_{6}: Is it a Topological Insulator or not?

    Full text link
    To resolve the controversial issue of the topological nature of the electronic structure of YbB6_{6}, we have made a combined study using density functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES). Accurate determination of the low energy band topology in DFT requires the use of modified Becke-Johnson exchange potential incorporating the spin-orbit coupling and the on-site Coulomb interaction UU of Yb 4f4f electrons as large as 7 eV. We have double-checked the DFT result with the more precise GW band calculation. ARPES is done with the non-polar (110) surface termination to avoid band bending and quantum well confinement that have confused ARPES spectra taken on the polar (001) surface termination. Thereby we show definitively that YbB6_{6} has a topologically trivial B 2pp-Yb 5dd semiconductor band gap, and hence is a non-Kondo non-topological insulator (TI). In agreement with theory, ARPES shows pure divalency for Yb and a pp-dd band gap of 0.3 eV, which clearly rules out both of the previous scenarios of ff-dd band inversion Kondo TI and pp-dd band inversion non-Kondo TI. We have also examined the pressure-dependent electronic structure of YbB6_{6}, and found that the high pressure phase is not a Kondo TI but a \emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary information contains 6 figures. 11 pages, 10 figures in total To be appeared in Phys. Rev. Lett. (Online publication is around March 16 if no delays.

    Density functional calculations of the electronic structure and magnetic properties of the hydrocarbon K3picene superconductor near the metal-insulator transition

    Get PDF
    We have investigated the electronic structures and magnetic properties of of K3picene, which is a first hydrocarbon superconductor with high transition temperature T_c=18K. We have shown that the metal-insulator transition (MIT) is driven in K3picene by 5% volume enhancement with a formation of local magnetic moment. Active bands for superconductivity near the Fermi level E_F are found to have hybridized character of LUMO and LUMO+1 picene molecular orbitals. Fermi surfaces of K3picene manifest neither prominent nesting feature nor marked two-dimensional behavior. By estimating the ratio of the Coulomb interaction U and the band width W of the active bands near E_F, U/W, we have demonstrated that K3picene is located in the vicinity of the Mott transition.Comment: 5 pages, 5 figure
    corecore