1,599 research outputs found
Orthodontic treatment of gummy smile by maxillary total intrusion with a midpalatal absolute anchorage system
This article describes the orthodontic treatment of a 31-year-old Korean female patient with gummy smile and crowding. The patient showed excessive gingival display in both the anterior and posterior areas and a large difference in gingival heights between the anterior and posterior teeth in the maxilla. To correct the gummy smile, we elected to intrude the entire maxillary dentition instead of focusing only on the maxillary anterior teeth. Alignment and leveling were performed, and a midpalatal absolute anchorage system as well as a modified lingual arch was designed to achieve posterosuperior movement of the entire upper dentition. The active treatment period was 18 months. The gummy smile and crowding were corrected, and the results were stable at 21 months post-treatment.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000004298/7SEQ:7PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000004298ADJUST_YN:YEMP_ID:A072100DEPT_CD:852CITE_RATE:.537FILENAME:hongyk-maas-gummy0smile-kjo-2013.pdfDEPT_NM:치의과학과SCOPUS_YN:YCONFIRM:
Physically based equation representing the forcing-driven precipitation in climate models
This study aims to improve our understanding of the response of precipitation to forcings by proposing a physically-based equation that resolves simulated precipitation based on the atmospheric energy budget. The equation considers the balance between latent heat release by precipitation and the sum of the slow response by tropospheric temperature changes and the fast response by abrupt radiative forcing (RF) changes. The equation is tuned with three parameters for each climate model and then adequately reproduces time-varying precipitation. By decomposing the equation, we highlight the slow response as the largest contributor to forcing-driven responses and uncertainty sizes in simulations. The second largest one to uncertainty is the fast-RF response from aerosols or greenhouse gases (GHG), depending on the low or highest Coupled Model Intercomparison Projection 6 future scenarios. The likely range of precipitation change at specific warming levels under GHG removal (GGR) and solar radiation management (SRM) mitigation plans is evaluated by a simple model optimizing the relationship between temperature and decomposed contributions from multi-simulations under three scenarios. The results indicate that GGR has more severe effects from aerosols than GHG for a 1.5 K warming, resulting in 0.91%–1.62% increases in precipitation. In contrast, SRM pathways project much drier conditions than GGR results due to the tropospheric cooling and remaining anthropogenic radiative heating. Overall, the proposed physically-based equation, the decomposition analysis, and our simple model provide valuable insights into the uncertainties under different forcings and mitigation pathways, highlighting the importance of slow and fast responses to human-induced forcings in shaping future precipitation changes
Volcanic-induced global monsoon drying modulated by diverse El Nino responses
International audienceThere remains large intersimulation spread in the hydrologic responses to tropical volcanic eruptions, and identifying the sources of diverse responses has important implications for assessing the side effects of solar geoengineering and improving decadal predictions. Here, we show that the intersimulation spread in the global monsoon drying response strongly relates to diverse El Niño responses to tropical eruptions. Most of the coupled climate models simulate El Niño-like equatorial eastern Pacific warming after volcanic eruptions but with different amplitudes, which drive a large spread of summer monsoon weakening and corresponding precipitation reduction. Two factors are further identified for the diverse El Niño responses. Different volcanic forcings induce systematic differences in the Maritime Continent drying and subsequent westerly winds over equatorial western Pacific, varying El Niño intensity. The internally generated warm water volume over the equatorial western Pacific in the pre-eruption month also contributes to the diverse El Niño development
Attribution of the 2015 record high sea surface temperatures over the central equatorial Pacific and tropical Indian Ocean
This study assessed the anthropogenic contribution to the 2015 record-breaking high sea surface temperatures (SSTs) observed in the central equatorial Pacific and tropical Indian Ocean. Considering a close link between extreme warm events in these regions, we conducted a joint attribution analysis using a fraction of attributable risk approach. Probability of occurrence of such extreme anomalies and long-term trends for the two oceanic regions were compared between CMIP5 multi-model simulations with and without anthropogenic forcing. Results show that the excessive warming in both regions is well beyond the range of natural variability and robustly attributable to human activities due to greenhouse gas increase. We further explored associated mechanisms including the Bjerknes feedback and background anthropogenic warming. It is concluded that background warming was the main contribution to the 2015 extreme SST event over the central equatorial Pacific Ocean on a developing El Niño condition, which in turn induced the extreme SST event over the tropical Indian Ocean through the atmospheric bridge effect.113Ysciescopu
Evaluation of the Antioxidant Activities and Tyrosinase Inhibitory Property from Mycelium Culture Extracts
Since mushrooms have many bioactive components, they have been used as components in folk medicine. Because mycelium has an advantage when it comes to large-scale production, this study aimed to evaluate the antioxidant properties and antityrosinase activity from 55 mycelia in culture media. Relatively high 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity was detected from the ethanol extract of culture media including mycelium (EECiM) of Morchella esculenta var. esculenta (MEVE), Auricularia polytricha (APO), Tremella aurantia (TAU), Volvariella bombycina (VBO), and Oudemansiella sp. (Osp), which also showed strong reducing power and inhibitory activity in relation to the thiobarbituric acid (TBA) value. On the other hand, relatively high tyrosinase inhibitory activity was detected in Inonotus mikadoi (IMI), Coriolus versicolor (CVE), Volvariella volvacea (VVO), Panellus serotinus (PSE), Auricularia auricula (AAU), and Fomitopsis sp
- …