358 research outputs found

    Optical Hall conductivity of systems with gapped spectral nodes

    Full text link
    We calculate the optical Hall conductivity within the Kubo formalism for systems with gapped spectral nodes, where the latter have a power-law dispersion with exponent n. The optical conductivity is proportional to n and there is a characteristic logarithmic singularity as the frequency approaches the gap energy. The optical Hall conductivity is almost unaffected by thermal fluctuations and disorder for n=1, whereas disorder has a stronger effect on transport properties if n=2

    Electrically Evoked Cortical Potentials (EECP) in Rabbits Using Implantable Retinal Stimulation System

    Get PDF
    NBS-ERC Supported by KOSEF (Grant R11-2000-075-01001-0) & Korea Health 21 R&D Project MOHW A05025

    A unique Z_4^R symmetry for the MSSM

    Get PDF
    We consider the possible anomaly free Abelian discrete symmetries of the MSSM that forbid the mu-term at perturbative order. Allowing for anomaly cancellation via the Green-Schwarz mechanism we identify discrete R-symmetries as the only possibility and prove that there is a unique Z_4^R symmetry that commutes with SO(10). We argue that non-perturbative effects will generate a mu-term of electroweak order thus solving the mu-problem. The non-perturbative effects break the Z_4^R symmetry leaving an exact Z_2 matter parity. As a result dimension four baryon- and lepton-number violating operators are absent while, at the non-perturbative level, dimension five baryon- and lepton-number violating operators get induced but are highly suppressed so that the nucleon decay rate is well within present bounds.Comment: 6 page

    A Model of Fermion Masses and Flavor Mixings with Family Symmetry SU(3)⊗U(1)SU(3)\otimes U(1)

    Full text link
    The family symmetry SU(3)⊗U(1)SU(3)\otimes U(1) is proposed to solve flavor problems about fermion masses and flavor mixings. It's breaking is implemented by some flavon fields at the high-energy scale. In addition a discrete group Z2Z_{2} is introduced to generate tiny neutrino masses, which is broken by a real singlet scalar field at the middle-energy scale. The low-energy effective theory is elegantly obtained after all of super-heavy fermions are integrated out and decoupling. All the fermion mass matrices are regularly characterized by four fundamental matrices and thirteen parameters. The model can perfectly fit and account for all the current experimental data about the fermion masses and flavor mixings, in particular, it finely predicts the first generation quark masses and the values of ξ13 l\theta^{\,l}_{13} and JCP lJ_{CP}^{\,l} in neutrino physics. All of the results are promising to be tested in the future experiments.Comment: 14 pages, 1 figure, to make a few of corrections to the old version. arXiv admin note: substantial text overlap with arXiv:1011.457

    Ultrarelativistic electron-hole pairing in graphene bilayer

    Full text link
    We consider ground state of electron-hole graphene bilayer composed of two independently doped graphene layers when a condensate of spatially separated electron-hole pairs is formed. In the weak coupling regime the pairing affects only conduction band of electron-doped layer and valence band of hole-doped layer, thus the ground state is similar to ordinary BCS condensate. At strong coupling, an ultrarelativistic character of electron dynamics reveals and the bands which are remote from Fermi surfaces (valence band of electron-doped layer and conduction band of hole-doped layer) are also affected by the pairing. The analysis of instability of unpaired state shows that s-wave pairing with band-diagonal condensate structure, described by two gaps, is preferable. A relative phase of the gaps is fixed, however at weak coupling this fixation diminishes allowing gapped and soliton-like excitations. The coupled self-consistent gap equations for these two gaps are solved at zero temperature in the constant-gap approximation and in the approximation of separable potential. It is shown that, if characteristic width of the pairing region is of the order of magnitude of chemical potential, then the value of the gap in the spectrum is not much different from the BCS estimation. However, if the pairing region is wider, then the gap value can be much larger and depends exponentially on its energy width.Comment: 13 pages with 8 figures; accepted to Eur. Phys. J.

    Lepton Dipole Moments and Rare Decays in the CP-violating MSSM with Nonuniversal Soft-Supersymmetry Breaking

    Full text link
    We investigate the muon anomalous magnetic dipole moment (MDM), the muon electric dipole moment (EDM) and the lepton-flavour-violating decays of the τ−\tau-lepton, Ï„â†’ÎŒÎł\tau \to \mu \gamma and τ→3ÎŒ\tau\to 3\mu, in the CP-violating Minimal Supersymmetric Standard Model (MSSM) with nonuniversal soft-supersymmetry breaking. We evaluate numerically the muon EDM and the branching ratios B(Ï„â†’ÎŒÎł)B(\tau \to \mu\gamma) and B(τ→3ÎŒ)B(\tau \to 3\mu), after taking into account the experimental constraints from the electron EDM and muon MDM. Upon imposition of the experimental limits on our theoretical predictions for the aforementioned branching ratios and the muon MDM, we obtain an upper bound of about 10−23e⋅cm10^{-23} e\cdot cm on the muon EDM which lies well within the explorable reach of the proposed experiment at BNL.Comment: Latex, 26 pages, 8 figures, accepted for publication in Phys. Rev.

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde

    Buffer layer-assisted growth of Ge nanoclusters on Si

    Get PDF
    In the buffer layer-assisted growth method, a condensed inert gas layer of xenon, with low-surface free energy, is used as a buffer to prevent direct interactions of deposited atoms with substrates. Because of␣an unusually wide applicability, the buffer layer-assisted growth method has provided a unique avenue for creation of nanostructures that are otherwise impossible to grow, and thus offered unprecedented opportunities for fundamental and applied research in nanoscale science and technology. In this article, we review recent progress in the application of the buffer layer-assisted growth method to the fabrication of Ge nanoclusters on Si substrates. In particular, we emphasize the novel configurations of the obtained Ge nanoclusters, which are characterized by the absence of a wetting layer, quasi-zero dimensionality with tunable sizes, and high cluster density in comparison with Ge nanoclusters that are formed with standard Stranski-Krastanov growth methods. The optical emission behaviors are discussed in correlation with the morphological properties

    Discrete R symmetries for the MSSM and its singlet extensions

    Full text link
    We determine the anomaly free discrete R symmetries, consistent with the MSSM, that commute with SU(5) and suppress the Ό\mu parameter and nucleon decay. We show that the order M of such ZMRZ_M^R symmetries has to divide 24 and identify 5 viable symmetries. The simplest possibility is a Z4RZ_4^R symmetry which commutes with SO(10). We present a string-derived model with this Z4RZ_4^R symmetry and the exact MSSM spectrum below the GUT scale; in this model Z4RZ_4^R originates from the Lorentz symmetry of compactified dimensions. We extend the discussion to include the singlet extensions of the MSSM and find Z4RZ_4^R and Z8RZ_8^R are the only possible symmetries capable of solving the Ό\mu problem in the NMSSM. We also show that a singlet extension of the MSSM based on a Z24RZ_{24}^R symmetry can provide a simultaneous solution to the Ό\mu and strong CP problem with the axion coupling in the favoured window.Comment: 44+1 pages, 2 figure
    • 

    corecore