2,416 research outputs found
Generating functional analysis of CDMA detection dynamics
We investigate the detection dynamics of the parallel interference canceller
(PIC) for code-division multiple-access (CDMA) multiuser detection, applied to
a randomly spread, fully syncronous base-band uncoded CDMA channel model with
additive white Gaussian noise (AWGN) under perfect power control in the
large-system limit. It is known that the predictions of the density evolution
(DE) can fairly explain the detection dynamics only in the case where the
detection dynamics converge. At transients, though, the predictions of DE
systematically deviate from computer simulation results. Furthermore, when the
detection dynamics fail to convergence, the deviation of the predictions of DE
from the results of numerical experiments becomes large. As an alternative,
generating functional analysis (GFA) can take into account the effect of the
Onsager reaction term exactly and does not need the Gaussian assumption of the
local field. We present GFA to evaluate the detection dynamics of PIC for CDMA
multiuser detection. The predictions of GFA exhibits good consistency with the
computer simulation result for any condition, even if the dynamics fail to
convergence.Comment: 14 pages, 3 figure
The path-integral analysis of an associative memory model storing an infinite number of finite limit cycles
It is shown that an exact solution of the transient dynamics of an
associative memory model storing an infinite number of limit cycles with l
finite steps by means of the path-integral analysis. Assuming the Maxwell
construction ansatz, we have succeeded in deriving the stationary state
equations of the order parameters from the macroscopic recursive equations with
respect to the finite-step sequence processing model which has retarded
self-interactions. We have also derived the stationary state equations by means
of the signal-to-noise analysis (SCSNA). The signal-to-noise analysis must
assume that crosstalk noise of an input to spins obeys a Gaussian distribution.
On the other hand, the path-integral method does not require such a Gaussian
approximation of crosstalk noise. We have found that both the signal-to-noise
analysis and the path-integral analysis give the completely same result with
respect to the stationary state in the case where the dynamics is
deterministic, when we assume the Maxwell construction ansatz.
We have shown the dependence of storage capacity (alpha_c) on the number of
patterns per one limit cycle (l). Storage capacity monotonously increases with
the number of steps, and converges to alpha_c=0.269 at l ~= 10. The original
properties of the finite-step sequence processing model appear as long as the
number of steps of the limit cycle has order l=O(1).Comment: 24 pages, 3 figure
Linear Complexity Lossy Compressor for Binary Redundant Memoryless Sources
A lossy compression algorithm for binary redundant memoryless sources is
presented. The proposed scheme is based on sparse graph codes. By introducing a
nonlinear function, redundant memoryless sequences can be compressed. We
propose a linear complexity compressor based on the extended belief
propagation, into which an inertia term is heuristically introduced, and show
that it has near-optimal performance for moderate block lengths.Comment: 4 pages, 1 figur
Aerodynamic investigation of an air-cooled axial-flow turbine. Part 2: Rotor blade tip-clearance effects on overall turbine performance and internal gas flow conditions: Experimental results and prediction methods
Total turbine blade performance was investigated while changing the blade tip clearance in three ways. The internal flow at the moving blade outlet point was measured. Experimental results were compared with various theoretical methods. Increased blade clearance leads to decreased turbine efficiency
Topological obstructions to fatness
Alan Weinstein showed that certain characteristic numbers of any Riemannian
submersion with totally geodesic fibers and positive vertizontal curvatures are
nonzero. In this paper we explicitly compute these invariants in terms of Chern
and Pontrjagin numbers of the bundle. This allows us to show that many bundles
do not admit such metrics.Comment: 32 pages. To appear in Geom. Topo
Gas Supply Nozzle to a Wall Constricted Arc; Plasma Source Studies for an Intensive Electro-Magnetic Plasma Accelerator
Error correcting code using tree-like multilayer perceptron
An error correcting code using a tree-like multilayer perceptron is proposed.
An original message \mbi{s}^0 is encoded into a codeword \boldmath{y}_0
using a tree-like committee machine (committee tree) or a tree-like parity
machine (parity tree). Based on these architectures, several schemes featuring
monotonic or non-monotonic units are introduced. The codeword \mbi{y}_0 is
then transmitted via a Binary Asymmetric Channel (BAC) where it is corrupted by
noise. The analytical performance of these schemes is investigated using the
replica method of statistical mechanics. Under some specific conditions, some
of the proposed schemes are shown to saturate the Shannon bound at the infinite
codeword length limit. The influence of the monotonicity of the units on the
performance is also discussed.Comment: 23 pages, 3 figures, Content has been extended and revise
Dynamical replica theoretic analysis of CDMA detection dynamics
We investigate the detection dynamics of the Gibbs sampler for code-division
multiple access (CDMA) multiuser detection. Our approach is based upon
dynamical replica theory which allows an analytic approximation to the
dynamics. We use this tool to investigate the basins of attraction when phase
coexistence occurs and examine its efficacy via comparison with Monte Carlo
simulations.Comment: 18 pages, 2 figure
From Wave Geometry to Fake Supergravity
The `Wave Geometry' equation of the pre-WWII Hiroshima program is also the
key equation of the current `fake supergravity' program. I review the status of
(fake) supersymmetric domain walls and (fake) pseudo-supersymmetric
cosmologies. An extension of the domain-wall/cosmology correspondence to a
triple correspondence with instantons shows that `pseudo-supersymmetry' has
another interpretation as Euclidean supersymmetry.Comment: 14 pages. Minor Revisions to original. To appear in proceedings of
the 5th International Symposium on Quantum Theory and Symmetries (QTS5),
Vallodolid, July 2007. in version
The Cavity Approach to Parallel Dynamics of Ising Spins on a Graph
We use the cavity method to study parallel dynamics of disordered Ising
models on a graph. In particular, we derive a set of recursive equations in
single site probabilities of paths propagating along the edges of the graph.
These equations are analogous to the cavity equations for equilibrium models
and are exact on a tree. On graphs with exclusively directed edges we find an
exact expression for the stationary distribution of the spins. We present the
phase diagrams for an Ising model on an asymmetric Bethe lattice and for a
neural network with Hebbian interactions on an asymmetric scale-free graph. For
graphs with a nonzero fraction of symmetric edges the equations can be solved
for a finite number of time steps. Theoretical predictions are confirmed by
simulation results. Using a heuristic method, the cavity equations are extended
to a set of equations that determine the marginals of the stationary
distribution of Ising models on graphs with a nonzero fraction of symmetric
edges. The results of this method are discussed and compared with simulations
- …
