254 research outputs found

    Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed Cross Dehydrocoupling of Silanes and Alcohols

    Get PDF
    The four-coordinate zinc compound ToMZnH (1, ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) catalyzes selective alcoholysis of substituted hydrosilanes. The catalytic reaction of PhMeSiH2 and aliphatic alcohols favors the monodehydrocoupled product PhMeHSi–OR. With the aryl alcohol 3,5-C6H3Me2OH, the selectivity for mono(aryloxy)hydrosilane PhMeHSiOC6H3Me2 and bis(aryloxy)silane PhMeSi(OC6H3Me2)2 is controlled by relative reagent concentrations. Reactions of secondary organosilanes and diols provide cyclic bis(oxo)silacycloalkanes in high yield. The empirical rate law for the ToMZnH-catalyzed reaction of 3,5-dimethylphenol and PhMeSiH2 is −d[PhMeSiH2]/dt = kâ€Čobs[ToMZnH]1[3,5-C6H3Me2OH]0[PhMeSiH2]1 (determined at 96 °C) which indicates that Si–O bond formation is turnover-limiting in the presence of excess phenol

    An all-solid-state laser source at 671 nm for cold atom experiments with lithium

    Full text link
    We present an all solid-state narrow line-width laser source emitting 670 mW670\,\mathrm{mW} output power at 671 nm671\,\mathrm{nm} delivered in a diffraction-limited beam. The \linebreak source is based on a fre-quency-doubled diode-end-linebreak pumped ring laser operating on the 4F3/2→4I13/2{^4F}_{3/2} \rightarrow {^4I}_{13/2} transition in Nd:YVO4_4. By using periodically-poled po-tassium titanyl phosphate (ppKTP) in an external build-up cavity, doubling efficiencies of up to 86% are obtained. Tunability of the source over 100 GHz100\,\rm GHz is accomplished. We demonstrate the suitability of this robust frequency-stabilized light source for laser cooling of lithium atoms. Finally a simplified design based on intra-cavity doubling is described and first results are presented

    Understanding The Correlation Of Libs And Acoustic Measurements Of Rocks And Soils Found In The Traverse Of The Perseverance Rover Across The Jezero Crater, Mars

    Get PDF
    The SuperCam instrument of the NASA MARS 2020 Perseverance rover combines a suite of atomic and molecular spectroscopies intended for an extensive description of rocks, soils and minerals in the surroundings of the landing site of the mission – the Jezero crater. The microphone installed on the SuperCam instrument allows the acquisition of acoustic signals resulting from the expansion of laser-induced plasmas towards the atmosphere. Apart from being affected by the propagation characteristics of the Mars atmosphere, the acoustic signal has an additional component related to the properties of the target including surface morphology, hardness, deformation parameters, and elasticity, among others. This information is currently being investigated as a complementary resource for characterization of the ablated material and may well supplement the LIBS data gathered from coincident laser shots. This talk will present SuperCam acoustic data of rocks and minerals found in the traverse of the Perseverance rover and will discuss its correlation with LIBS spectra.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD).</p> <p>Methods</p> <p>The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software <it>Code_Saturne</it><sup>Ÿ </sup>(<url>http://www.code-saturne.org</url>) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations.</p> <p>Results</p> <p>We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.</p> <p>Conclusions</p> <p>CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.</p

    LIBS and Acoustic Measurements of Rocks and Regolith Found in the Traverse of the Perseverance Rover Across the Jezero Crater, Mars

    Get PDF
    The SuperCam instrument of the NASA MARS 2020 Perseverance rover combines a suite of atomic and molecular spectroscopies intended for an extensive description of rocks, soils and minerals in the surroundings of the landing site of the mission – the Jezero crater. The microphone installed on the SuperCam instrument allows the acquisition of acoustic signals resulting from the expansion of laser-induced plasmas towards the atmosphere. Apart from being affected by the propagation characteristics of the Mars atmosphere, the acoustic signal has an additional component related to the properties of the target including surface morphology, hardness, deformation parameters, and elasticity, among others. This information is currently being investigated as a complementary resource for characterization of the ablated material and may well supplement the LIBS data gathered from coincident laser shots. This talk will present SuperCam acoustic data of rocks and minerals found in the traverse of the Perseverance rover and will discuss its correlation with LIBS spectra.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Moonraker -- Enceladus Multiple Flyby Mission

    Full text link
    Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets expelling ocean material into space. Cassini investigations indicated that the subsurface ocean could be a habitable environment having a complex interaction with the rocky core. Further investigation of the composition of the plume formed by the jets is necessary to fully understand the ocean, its potential habitability, and what it tells us about Enceladus' origin. Moonraker has been proposed as an ESA M-class mission designed to orbit Saturn and perform multiple flybys of Enceladus, focusing on traversals of the plume. The proposed Moonraker mission consists of an ESA-provided platform, with strong heritage from JUICE and Mars Sample Return, and carrying a suite of instruments dedicated to plume and surface analysis. The nominal Moonraker mission has a duration of 13.5 years. It includes a 23-flyby segment with 189 days allocated for the science phase, and can be expanded with additional segments if resources allow. The mission concept consists in investigating: i) the habitability conditions of present-day Enceladus and its internal ocean, ii) the mechanisms at play for the communication between the internal ocean and the surface of the South Polar Terrain, and iii) the formation conditions of the moon. Moonraker, thanks to state-of-the-art instruments representing a significant improvement over Cassini's payload, would quantify the abundance of key species in the plume, isotopic ratios, and physical parameters of the plume and the surface. Such a mission would pave the way for a possible future landed mission.Comment: Accepted for publication in The Planetary Science Journa

    Moonraker: Enceladus Multiple Flyby Mission

    Get PDF
    Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets expelling ocean material into space. Cassini investigations indicated that the subsurface ocean could be a habitable environment having a complex interaction with the rocky core. Further investigation of the composition of the plume formed by the jets is necessary to fully understand the ocean, its potential habitability, and what it tells us about Enceladus’s origin. Moonraker has been proposed as an ESA M-class mission designed to orbit Saturn and perform multiple flybys of Enceladus, focusing on traversals of the plume. The proposed Moonraker mission consists of an ESA-provided platform with strong heritage from JUICE and Mars Sample Return and carrying a suite of instruments dedicated to plume and surface analysis. The nominal Moonraker mission has a duration of ∌13.5 yr. It includes a 23-flyby segment with 189 days allocated for the science phase and can be expanded with additional segments if resources allow. The mission concept consists of investigating (i) the habitability conditions of present-day Enceladus and its internal ocean, (ii) the mechanisms at play for the communication between the internal ocean and the surface of the South Polar Terrain, and (iii) the formation conditions of the moon. Moonraker, thanks to state-of-the-art instruments representing a significant improvement over Cassini's payload, would quantify the abundance of key species in the plume, isotopic ratios, and the physical parameters of the plume and the surface. Such a mission would pave the way for a possible future landed mission
    • 

    corecore