17 research outputs found
Genetic Aspects of Micronutrients Important for Inflammatory Bowel Disease
Inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC) are complex diseases whose etiology is associated with genetic and environmental risk factors, among which are diet and gut microbiota. To date, IBD is an incurable disease and the main goal of its treatment is to reduce symptoms, prevent complications, and improve nutritional status and the quality of life. Patients with IBD usually suffer from nutritional deficiency with imbalances of specific micronutrient levels that contribute to the further deterioration of the disease. Therefore, along with medications usually used for IBD treatment, therapeutic strategies also include the supplementation of micronutrients such as vitamin D, folic acid, iron, and zinc. Micronutrient supplementation tailored according to individual needs could help patients to maintain overall health, avoid the triggering of symptoms, and support remission. The identification of individuals’ genotypes associated with the absorption, transport and metabolism of micronutrients can modify future clinical practice in IBD and enable individualized treatment. This review discusses the personalized approach with respect to genetics related to micronutrients commonly used in inflammatory bowel disease treatment
Characterization of the John A. Galt telescope for radio holography with CHIME
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the
21 cm emission of astrophysical neutral hydrogen to probe large scale structure
at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath
substantially brighter foregrounds remains a key challenge. Due to the high
dynamic range between 21 cm and foreground emission, an exquisite calibration
of instrument systematics, notably the telescope beam, is required to
successfully filter out the foregrounds. One technique being used to achieve a
high fidelity measurement of the CHIME beam is radio holography, wherein
signals from each of CHIME's analog inputs are correlated with the signal from
a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m
Galt telescope tracks a bright point source transiting over CHIME. In this work
we present an analysis of several of the Galt telescope's properties. We employ
driftscan measurements of several bright sources, along with background
estimates derived from the 408 MHz Haslam map, to estimate the Galt system
temperature. To determine the Galt telescope's beam shape, we perform and
analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use
early holographic measurements to measure the Galt telescope's geometry with
respect to CHIME for the holographic analysis of the CHIME and Galt
interferometric data set
A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman- Forest
We report the detection of 21 cm emission at an average redshift in the cross-correlation of data from the Canadian Hydrogen Intensity
Mapping Experiment (CHIME) with measurements of the Lyman- forest from
eBOSS. Data collected by CHIME over 88 days in the ~MHz frequency band
() are formed into maps of the sky and high-pass delay filtered
to suppress the foreground power, corresponding to removing cosmological scales
with at the average redshift.
Line-of-sight spectra to the eBOSS background quasar locations are extracted
from the CHIME maps and combined with the Lyman- forest flux
transmission spectra to estimate the 21 cm-Lyman- cross-correlation
function. Fitting a simulation-derived template function to this measurement
results in a detection significance. The coherent accumulation of the
signal through cross-correlation is sufficient to enable a detection despite
excess variance from foreground residuals times brighter than the
expected thermal noise level in the correlation function. These results are the
highest-redshift measurement of \tcm emission to date, and set the stage for
future 21 cm intensity mapping analyses at
A fast radio burst localized at detection to a galactic disk using very long baseline interferometry
Fast radio bursts (FRBs) are millisecond-duration, luminous radio transients
of extragalactic origin. These events have been used to trace the baryonic
structure of the Universe using their dispersion measure (DM) assuming that the
contribution from host galaxies can be reliably estimated. However,
contributions from the immediate environment of an FRB may dominate the
observed DM, thus making redshift estimates challenging without a robust host
galaxy association. Furthermore, while at least one Galactic burst has been
associated with a magnetar, other localized FRBs argue against magnetars as the
sole progenitor model. Precise localization within the host galaxy can
discriminate between progenitor models, a major goal of the field. Until now,
localizations on this spatial scale have only been carried out in follow-up
observations of repeating sources. Here we demonstrate the localization of FRB
20210603A with very long baseline interferometry (VLBI) on two baselines, using
data collected only at the time of detection. We localize the burst to SDSS
J004105.82+211331.9, an edge-on galaxy at , and detect recent
star formation in the kiloparsec-scale vicinity of the burst. The edge-on
inclination of the host galaxy allows for a unique comparison between the line
of sight towards the FRB and lines of sight towards known Galactic pulsars. The
DM, Faraday rotation measure (RM), and scattering suggest a progenitor
coincident with the host galactic plane, strengthening the link between the
environment of FRB 20210603A and the disk of its host galaxy. Single-pulse VLBI
localizations of FRBs to within their host galaxies, following the one
presented here, will further constrain the origins and host environments of
one-off FRBs.Comment: 40 pages, 13 figures, submitted. Fixed typo in abstrac
New results on quasar outflows
Accretion disk outflows are an important part of the quasar phenomenon. They might play a major role in distributing metals to the galactic surroundings, halting growth of the central black hole and providing kinetic energy "feedback" to regulate star formation in the host galaxies. Some models of galaxy evolution indicate that feedback requires kinetic energy luminosities, LK, that are ∼5% of the quasar bolometric; L K/L = Mwv2/2ηMaccc ∼ 5% is possible if Mw ∼ Macc (with v ∼ 0.1c, and η ∼ 0.1). Here we describe results from two studies designed to test the theoretical energetics of radiatively driven outflows and derive observational constraints on the outflow geometry and physical properties emphasizing weaker outflow features like NALs and mini-BALs
Reconfigurable robotic machining system controlled and programmed in a machine tool manner
Industrial robots represent a promising cost-effective and flexible alternative for some machining applications. This paper describes the concept of reconfigurable robot multi-axis machining systems for machining the complex parts of light materials with lower tolerances having freeform surfaces. For the basic configuration of a five-axis robotic machining system, the robot modeling approach is shown in detail as well as the prototype of developed control system with programming in G-code. The experimental robotic machining system has been verified by successful machining of several test work pieces