26 research outputs found

    Inhibition, Reinforcement Sensitivity and Temporal Information Processing in ADHD and ADHD+ODD: Evidence of a Separate Entity?

    Get PDF
    This study compared children with ADHD-only, ADHD+ODD and normal controls (age 8–12) on three key neurocognitive functions: response inhibition, reinforcement sensitivity, and temporal information processing. The goal was twofold: (a) to investigate neurocognitive impairments in children with ADHD-only and children with ADHD+ODD, and (b) to test whether ADHD+ODD is a more severe from of ADHD in terms of neurocognitive performance. In Experiment 1, inhibition abilities were measured using the Stop Task. In Experiment 2, reinforcement sensitivity and temporal information processing abilities were measured using a Timing Task with both a reward and penalty condition. Compared to controls, children with ADHD-only demonstrated impaired inhibitory control, showed more time underestimations, and showed performance deterioration in the face of reward and penalty. Children with ADHD+ODD performed in-between children with ADHD-only and controls in terms of inhibitory controls and the tendency to underestimate time, but were more impaired than controls and children with ADHD-only in terms of timing variability. In the face of reward and penalty children with ADHD+ODD improved their performance compared to a neutral condition, in contrast to children with ADHD-only. In the face of reward, the performance improvement in the ADHD+ODD group was disproportionally larger than that of controls. Taken together the findings suggest that, in terms of neurocognitive functioning, comorbid ADHD+ODD is a substantial different entity than ADHD-only

    Particulate Fillers in Thermoplastics

    Get PDF
    The characteristics of particulate filled thermoplastics are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape, while the main matrix property is stiffness. Segregation, aggregation and the orientation of anisotropic particles determine structure. Interfacial interactions lead to the formation of a stiff interphase considerably influencing properties. Interactions are changed by surface modification, which must be always system specific and selected according to its goal. Under the effect of external load inhomogeneous stress distribution develops around heterogeneities, which initiate local micromechanical deformation processes determining the macroscopic properties of the composites

    The neural signatures of egocentric bias in normative decision-making

    No full text
    Bargaining parties often disagree on what fair is, due to the reason that people are prone to believe that what favors oneself is fair, i.e., an egocentric bias. In this study, we investigated the neural signatures underlying egocentric bias in fairness decision-making, conjoining an adapted ultimatum game (UG) with event-related fMRI and functional connectivity. Participants earned monetary rewards with a partner in a production stage, wherein their contributions to the earnings were manipulated. Afterwards, the joint earnings were randomly divided, and the distribution was presented simultaneously with contribution information to participants, who accepted/rejected distributions of earnings as the same manner in standard UG. We identified an egocentric bias in fairness decisions, such that participants frequently rejected self-contributed disadvantageous outcomes, but much less so in response to other-contributed advantageous outcomes, although both involved mismatch between contribution and payoff. This bias was underpinned by regions involved in representing fairness norms, including the anterior insula and dorsal anterior cingulate cortex (dACC). Furthermore, the thalamus activity was predictive of the bias, such that the level of egocentric bias decreased as a function of the activation level of the thalamus. Finally, our functional-connectivity findings indicated that the thalamus worked together with insula and dACC to modulate behavioral egocentric bias in fairness-related decisions. Our findings uncover the neural basis underlying the modulation of egocentric bias in normative decision-making, and highlight the role of neural circuits associated with norm enforcement in this phenomenon
    corecore