960 research outputs found

    Polarization operator approach to electron-positron pair production in combined laser and Coulomb fields

    Get PDF
    The optical theorem is applied to the process of electron-positron pair creation in the superposition of a nuclear Coulomb and a strong laser field. We derive new representations for the total production rate as two-fold integrals, both for circular laser polarization and for the general case of elliptic polarization, which has not been treated before. Our approach allows us to obtain by analytical means the asymptotic behaviour of the pair creation rate for various limits of interest. In particular, we consider pair production by two-photon absorption and show that, close to the energetic threshold of this process, the rate obeys a power law in the laser frequency with different exponents for linear and circular laser polarization. With the help of the upcoming x-ray laser sources our results could be tested experimentally.Comment: 10 pages, 3 figure

    Coulomb corrections and multiple e+e- pair production in ultra-relativistic nuclear collisions

    Full text link
    We consider the problem of Coulomb corrections to the inclusive cross section. We show that these corrections in the limiting case of small charge number of one of the nuclei coincide with those to the exclusive cross section. Within our approach we also obtain the Coulomb corrections for the case of large charge numbers of both nuclei.Comment: 7 pages, REVTeX

    Bremsstrahlung in alpha-Decay Reexamined

    Get PDF
    A high-statistics measurement of bremsstrahlung emitted in the alpha decay of 210Po has been performed, which allows to follow the photon spectra up to energies of ~ 500 keV. The measured differential emission probability is in good agreement with our theoretical results obtained within the quasi classical approximation as well as with the exact quantum mechanical calculation. It is shown that due to the small effective electric dipole charge of the radiating system a significant interference between the electric dipole and quadrupole contributions occurs, which is altering substantially the angular correlation between the alpha particle and the emitted photon.Comment: 10 pages, 5 figures, v2: fix of small typo

    Finite nuclear size and Lamb shift of p-wave atomic states

    Get PDF
    We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qualitatively different from that for s-wave states. The perturbation theory expansion for the relative correction for a p1/2p_{1/2}-state starts from αln⁥(1/Zα)\alpha\ln(1/Z\alpha)-term, while for s1/2s_{1/2}-states it starts from Zα2Z\alpha^2 term. Here α\alpha is the fine structure constant and ZZ is the nuclear charge. In the present work we calculate the α\alpha-terms for 2p2p-states, the result for 2p1/22p_{1/2}-state reads (8α/9π)[ln⁥(1/(Zα)2)+0.710](8\alpha/9\pi)[\ln(1/(Z\alpha)^2)+0.710]. Even more interesting are p3/2p_{3/2}-states. In this case the ``correction'' is by several orders of magnitude larger than the ``leading'' FNS shift.Comment: 4 pages, 2 figure

    Laser-dressed vacuum polarization in a Coulomb field

    Get PDF
    We investigate quantum electrodynamic effects under the influence of an external, time-dependent electromagnetic field, which mediates dynamic modifications of the radiative corrections. Specifically, we consider the quantum electrodynamic vacuum-polarization tensor under the influence of two external background fields: a strong laser field and a nuclear Coulomb field. We calculate the charge and current densities induced by a nuclear Coulomb field in the presence of a laser field. We find the corresponding induced scalar and vector potentials. The induced potential, in first-order perturbation theory, leads to a correction to atomic energy levels. The external laser field breaks the rotational symmetry of the system. Consequently, the induced charge density is not spherically symmetric, and the energy correction therefore leads to a "polarized Lamb shift." In particular, the laser generates an additional potential with a quadrupole moment. The corresponding laser-dressed vacuum-polarization potential behaves like 1/r**3 at large distances, unlike the Uehling potential that vanishes exponentially for large r. Our investigation might be useful for other situations where quantum field theoretic phenomena are subjected to external fields of a rather involved structure.Comment: 13 pages, RevTe

    On the nature of Coulomb corrections to the e^+e^- pair production in ultrarelativistic heavy-ion collisions

    Get PDF
    We manifest the origin of the wrong conclusion made by several groups of authors on the absence of Coulomb corrections to the cross section of the e^+e^- pair production in ultrarelativistic heavy-ion collisions. The source of the mistake is connected with an incorrect passage to the limit in the expression for the cross section. When this error is eliminated, the Coulomb corrections do not vanish and agree with the results obtained within the Weizs\"acker-Williams approximation.Comment: 7 pages, LaTe

    Structure of the Coulomb and unitarity corrections to the cross section of e+e−e^+e^- pair production in ultra-relativistic nuclear collisions

    Get PDF
    We analyze the structure of the Coulomb and unitarity corrections to the single pair production as well as the cross section for the multiple pair production. In the external field approximation we consider the probability of e+e−e^+e^- pair production at fixed impact parameter ρ\rho between colliding ultra-relativistic heavy nuclei. We obtain the analytical result for this probability at large ρ\rho as compared to the electron Compton wavelength. We estimate also the unitary corrections to the total cross section of the process.Comment: 10 pages, 2 figures, RevTeX, references correcte

    Bound-free pair production in ultra-relativistic ion collisions at the LHC collider: Analytic approach to the total and differential cross sections

    Get PDF
    A theoretical investigation of the bound-free electron-positron pair production in relativistic heavy ion collisions is presented. Special attention is paid to the positrons emitted under large angles with respect to the beam direction. The measurement of these positrons in coincidence with the down--charged ions is in principle feasible by LHC experiments. In order to provide reliable estimates for such measurements, we employ the equivalent photon approximation together with the Sauter approach and derive simple analytic expressions for the differential pair--production cross section, which compare favorably to the results of available numerical calculations. Based on the analytic expressions, detailed calculations are performed for collisions of bare Pb82+^{82+} ions, taking typical experimental conditions of the LHC experiments into account. We find that the expected count rate strongly depends on the experimental parameters and may be significantly enhanced by increasing the positron-detector acceptance cone.Comment: 10 pages, 4 figure

    Combined effect of coherent Z exchange and the hyperfine interaction in atomic PNC

    Get PDF
    The nuclear spin-dependent parity nonconserving (PNC) interaction arising from a combination of the hyperfine interaction and the coherent, spin-independent, PNC interaction from Z exchange is evaluated using many-body perturbation theory. For the 6s-7s transition in 133Cs, we obtain a result that is about 40% smaller than that found previously by Bouchiat and Piketty [Phys. Lett. B 269, 195 (1991)]. Applying this result to 133Cs, leads to an increase in the experimental value of nuclear anapole moment and exacerbates differences between constraints on PNC meson coupling constants obtained from the Cs anapole moment and those obtained from other nuclear parity violating experiments. Nuclear spin-dependent PNC dipole matrix elements, including contributions from the combined weak-hyperfine interaction, are also given for the 7s-8s transition in 211Fr and for transitions between ground-state hyperfine levels in K, Rb, Cs, Ba+, Au, Tl, Fr, and Ra+.Comment: Revtex4 preprint 19 pages 4 table

    Strong suppression of Coulomb corrections to the cross section of e+e- pair production in ultrarelativistic nuclear collisions

    Full text link
    The Coulomb corrections to the cross section of e+e−e^+e^- pair production in ultrarelativistic nuclear collisions are calculated in the next-to-leading approximation with respect to the parameter L=ln⁡γAγBL=\ln \gamma_A\gamma_B (γA,B\gamma_{A,B} are the Lorentz factors of colliding nuclei). We found considerable reduction of the Coulomb corrections even for large γAγB\gamma_A\gamma_B due to the suppression of the production of e+e−e^+e^- pair with the total energy of the order of a few electron masses in the rest frame of one of the nuclei. Our result explains why the deviation from the Born result were not observed in the experiment at SPS.Comment: 4 pages, RevTe
    • 

    corecore