229 research outputs found

    Structural and magnetic properties of nanostructured composites (SrFe<inf>12</inf>O<inf>19</inf>)<inf>x</inf>(CaCu<inf>3</inf>Ti<inf>4</inf>O<inf>12</inf>)<inf>1-x</inf>

    Get PDF
    © 2017 Elsevier B.V. (SrFe 12 O 19 ) x (CaCu 3 Ti 4 O 12 ) 1-x (x = 0.01, 0.03, 0.07, 0.1) composites were synthesized using a solid state method, while the pre-synthesized strontium hexaferrite SrFe 12 O 19 (SFO) was added to the stoichiometric amount of CaO, CuO and TiO oxides to form the CaCu 3 Ti 4 O 12 (CCTO) structure around SFO microinclusions. The structural and microstructural properties of obtained composites were studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques. The magnetic properties were studied by electron spin resonance and magnetometry methods. Based on all experimental data we can conclude, that SFO x CCTO 1-x nanostructured composites were formed only for concentrations x = 0.03 and x = 0.07, where SFO nanoinclusions are inside CCTO matrix, that leads to the strong mutual influence of the magnetic properties of both component

    Comparison of the Mechanical Properties and Corrosion Resistance of the Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN Coatings

    Get PDF
    In this work, the mechanical properties and corrosion resistance of Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings deposited by the physical vapor deposition (PVD) method on Ti-6Al-4V alloy were compared. The phase composition of the coatings, their hardness and fracture resistance in scratch tests were determined, and their structural characteristics were also studied using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The diffraction spectra were made using an automatic X-ray diffractometer. The value of the adhesive component of the friction coefficient f adh of the pair “coated and uncoated Ti-6Al-4V alloy” was investigated in the temperature range of 20–900°C. The lowest value of f adh was detected for the Zr-ZrN coating at temperatures below 400°C, while for the Mo-MoN coating it was observed at temperatures above 700°C. The polarization curves of the coated and uncoated samples were performed in a 3% aqueous NaCl solution. The level of corrosion of the Ti-6Al-4V alloy samples with Cr-CrN, Ti-TiN, Zr-ZrN, and Mo-MoN coatings was evaluated using the Tafel extrapolation method, the iteration method, and the polarization resistance method. The results obtained with these methods indicate that the Zr-ZrN coated sample has the best corrosion resistance in the 3 wt.% NaCl solution, with a corrosion current density of 0.123 µA/cm 2

    編集委員

    Get PDF
    © 2017, Pleiades Publishing, Ltd. The structure and mechanical properties of the crystals of solid solutions of zirconium dioxide, which are stabilized by yttrium and cerium oxides, have been studied. The electron paramagnetic resonance technique has been used to identify Ce 3+ ions and to determine their relative concentration in the crystals. It is shown that the presence of Ce 3+ ions in the crystals is the main factor responsible for their high fracture toughness. The annealings carried out during investigations, which lead to a decrease in the concentration of Ce 3+ ions, show that a change in the valence state of cerium ions lowers the fracture toughness of the crystals

    Effect of the valence state of ce ions on the phase stability and mechanical properties of the crystals of ZrO<inf>2</inf>-based solid solutions

    Get PDF
    © 2017, Pleiades Publishing, Ltd. The structure and mechanical properties of the crystals of solid solutions of zirconium dioxide, which are stabilized by yttrium and cerium oxides, have been studied. The electron paramagnetic resonance technique has been used to identify Ce 3+ ions and to determine their relative concentration in the crystals. It is shown that the presence of Ce 3+ ions in the crystals is the main factor responsible for their high fracture toughness. The annealings carried out during investigations, which lead to a decrease in the concentration of Ce 3+ ions, show that a change in the valence state of cerium ions lowers the fracture toughness of the crystals

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility

    Get PDF
    A series of cryogenic, layered deuterium-tritium (DT) implosions have produced, for the first time, fusion energy output twice the peak kinetic energy of the imploding shell. These experiments at the National Ignition Facility utilized high density carbon ablators with a three-shock laser pulse (1.5 MJ in 7.5 ns) to irradiate low gas-filled (0.3  mg/cc of helium) bare depleted uranium hohlraums, resulting in a peak hohlraum radiative temperature ∼290  eV. The imploding shell, composed of the nonablated high density carbon and the DT cryogenic layer, is, thus, driven to velocity on the order of 380  km/s resulting in a peak kinetic energy of ∼21  kJ, which once stagnated produced a total DT neutron yield of 1.9×10¹⁶ (shot N170827) corresponding to an output fusion energy of 54 kJ. Time dependent low mode asymmetries that limited further progress of implosions have now been controlled, leading to an increased compression of the hot spot. It resulted in hot spot areal density (ρr∼0.3  g/cm²) and stagnation pressure (∼360  Gbar) never before achieved in a laboratory experiment

    Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    Get PDF
    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1  g/cm[superscript 2]. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition
    corecore